HEIDENHAIN TNC 320/340 551-05 CNC Control Manuel utilisateur

Ajouter à Mes manuels
519 Des pages
HEIDENHAIN TNC 320/340 551-05 CNC Control Manuel utilisateur | Fixfr
Manuel d'utilisation
HEIDENHAINConversationnel
TNC 320
Logiciel CN
340 551-05
340 554-05
Français (fr)
11/2011
Eléments de commande de la TNC
Eléments de commande à l'écran
Touche
Gérer les programmes/fichiers, fonctions TNC
Touche
Fonction
Fonction
Sélectionner/effacer des programmes/
fichiers, transmission externe de données
Définir le partage de l'écran
Définir l'appel de programme, sélectionner
les tableaux de points zéro et de points
Commuter l'écran entre les modes
Machine et Programmation
Sélectionner la fonction MOD
Softkeys : choix de fonction à l'écran
Afficher les textes d'aide pour les
messages d'erreur CN, appeler TNCguide
Commuter les barres de softkeys
Afficher tous les messages d'erreur en
instance
Modes Machine
Touche
Afficher la calculatrice
Fonction
Mode Manuel
Touches de navigation
Manivelle électronique
Touche
Fonction
Déplacer la surbrillance
Positionnement avec introduction
manuelle
Sélection directe des séquences, cycles
et fonctions paramétrées
Exécution de programme pas à pas
Potentiomètres pour l'avance/la vitesse de broche
Exécution de programme en continu
Avance
Vitesse de rotation broche
100
100
Modes Programmation
Touche
Fonction
50
150
50
150
Mémorisation/Edition de programme
0
F %
0
S %
Test de programme
Cycles, sous-programmes et répétitions de parties de
programme
Touche
Fonction
Définir les cycles palpeurs
Définir et appeler les cycles
Introduire et appeler les sous-programmes
et répétitions de partie de programme
Introduire un arrêt programmé dans le
programme
Introduire les axes de coordonnées et chiffres, édition
Données d'outils
Touche
Fonction
Définir les données d'outils dans le
programme
Touche
...
Fonction
Sélectionner ou introduire les
coordonnées des axes dans le
programme
Appeler les données d'outils
...
Programmation d'opérations de contournage
Touche
Chiffres
Point décimal/inverser le signe
Fonction
Approche/sortie du contour
Introduction de coordonnées
polaires/valeurs incrémentales
Programmation flexible de contours FK
Programmer les paramètres Q/état des
paramètres Q
Droite
Transférer la position courante ou valeur
de la calculatrice
Centre de cercle/pôle pour coordonnées
polaires
Sauter les questions du dialogue et
effacer des mots
Trajectoire circulaire avec centre de
cercle
Valider la saisie et poursuivre le dialogue
Trajectoire circulaire avec rayon
Fermer la séquence, arrêter la saisie
Trajectoire circulaire avec raccordement
tangentiel
Annuler les valeurs numériques
introduites ou effacer le message
d'erreur TNC
Chanfrein/arrondi d'angle
Interrompre le dialogue, effacer une
partie du programme
Fonctions spéciales
Touche
Fonction
Afficher les fonctions spéciales
Sélection onglet suivant dans formulaire
Champ de dialogue ou bouton
avant/arrière
Remarques sur ce manuel
Remarques sur ce manuel
Vous trouverez ci-après une liste des symboles utilisés dans ce
manuel
Ce symbole signale que vous devez tenir compte de
remarques particulières relatives à la fonction décrite.
Ce symbole signale l'existence d'un ou plusieurs dangers
en relation avec l'utilisation de la fonction décrite :
„ Dangers pour la pièce
„ Dangers pour le matériel de serrage
„ Dangers pour l'outil
„ Dangers pour la machine
„ Dangers pour l'utilisateur
Ce symbole signale que la fonction décrite doit être
adaptée par le constructeur de votre machine. La fonction
décrite peut donc agir différemment d'une machine à
l'autre.
Ce symbole signale qu'un autre manuel d'utilisation
comporte d'autres informations détaillées relatives à une
fonction.
Modifications souhaitées ou découverte d'une
"coquille"?
Nous nous efforçons en permanence d'améliorer notre
documentation. Merci de votre aide, faites-nous part de votre souhaits
de modification à l'adresse E-mail: [email protected].
HEIDENHAIN TNC 320
5
Type de TNC, logiciel et fonctions
Type de TNC, logiciel et fonctions
Ce manuel décrit les fonctions dont disposent les TNCs à partir des
numéros de logiciel CN suivants :
Type de TNC
Nr. de logiciel CN
TNC 320
340 551-05
TNC 320 Poste de programmation
340 554-05
A l'aide des paramètres machine, le constructeur adapte sa machine
aux fonctions de la TNC qui lui sont utiles. Ce manuel décrit donc des
fonctions qui ne sont pas présentes dans toutes les TNC.
Exemple de fonctions TNC non disponibles sur toutes les machines :
„ Etalonnage d'outils à l'aide du TT
Nous vous conseillons de prendre contact avec le constructeur de
votre machine pour connaître les fonctions présentes sur votre
machine.
De nombreux constructeurs de machines ainsi que HEIDENHAIN
proposent des cours de programmation TNC. Il est conseillé de suivre
de tels cours afin de se familiariser rapidement avec les fonctions de
la TNC.
Manuel d'utilisation de la programmation des cycles :
Toutes les fonctions relatives aux cycles (cycles palpeurs et
cycles d'usinage) sont décrites dans un autre manuel. Si
vous le désirez, adressez-vous à HEIDENHAIN pour
recevoir ce manuel d'utilisation. ID: 679 220-xx
6
Type de TNC, logiciel et fonctions
Options de logiciel
La TNC 320 dispose de diverses options de logiciel qui peuvent être
activées par le constructeur de votre machine. Chaque option doit être
activée séparément et comporte individuellement les fonctions
suivantes :
Options du hardware
Axe auxiliaire pour 4 axes et broche non asservie
Axe auxiliaire pour 5 axes et broche non asservie
Option de logiciel 1 (numéro d'option #08)
Interpolation sur corps d'un cylindre (cycles 27, 28 et 29)
Avance en mm/min. pour axes rotatifs : M116
Inclinaison du plan d'usinage (fonctions Plane, cycle 19 et softkey
3D-ROT en mode de fonctionnement Manuel)
Cercle sur 3 axes avec inclinaison du plan d'usinage
Niveau de développement (fonctions
„upgrade“)
Parallèlement aux options de logiciel, d'importants nouveaux
développements du logiciel TNC sont gérés par ce qu'on appelle les
Feature Content Level (expression anglaise exprimant les niveaux de
développement). Vous ne disposez pas des fonctions FCL lorsque
votre TNC reçoit une mise à jour de logiciel.
Lorsque vous recevez une nouvelle machine, vous
recevez toutes les fonctions de mise à jour Upgrade sans
surcoût.
Dans ce Manuel, ces fonctions Upgrade sont signalées par
l'expression FCL n; n précisant le numéro d'indice du niveau de
développement.
En achetant le code correspondant, vous pouvez activer les fonctions
FCL. Pour cela, prenez contact avec le constructeur de votre machine
ou avec HEIDENHAIN.
HEIDENHAIN TNC 320
7
Type de TNC, logiciel et fonctions
Lieu d'implantation prévu
La TNC correspond à la classe A selon EN 55022. Elle est prévue
principalement pour fonctionner en milieux industriels.
Information légale
Ce produit utilise l'Open Source Software. Vous trouverez d'autres
informations sur la commande au chapitre
U
U
U
8
Mode de fonctionnement Mémorisation/Edition
Fonction MOD
Softkey REMARQUES SUR LA LICENCE
Nouvelles fonctions du logiciel 340 55x-04
Nouvelles fonctions du logiciel
340 55x-04
„ Nouvelle fonction PLANE permettant la définition flexible d'un plan
d'usinage incliné (voir Manuel d'utilisation Dialogue conversationnel
Texte clair)(voir „La fonction PLANE : inclinaison du plan d'usinage
(Logiciel Option 1)” à la page 343)
„ Le système d'aide contextuel TNC guide a été ajouté (voir „Appeler
le TNCguide” à la page 128)
„ Nouvelle fonction FUNCTION PARAX permettant de définir le
comportement des axes parallèles U, V, W (voir „Travailler avec les
axes parallèles U. V et W” à la page 327)
„ Les langues conversationnelles suivantes ont été ajoutées :
Slovaque, Norvégienne, Lettonne, Estonienne, Coréenne, Turque et
Roumaine (voir „Liste des paramètres” à la page 462)
„ Avec la touche Backspace on peut maintenant effacer des
caractères lors de l'introduction des données (voir „Introduire les
axes de coordonnées et chiffres, édition” à la page 3)
„ La fonction PATTERN DEF destinée à définir les motifs de points a été
ajoutée (voir manuel d'utilisation des cycles)
„ La fonction SEL PATTERN permet de sélectionner les tableaux de
points (voir manuel d'utilisation des cycles)
„ La fonction CYCL CALL PAT permet maintenant d'exécuter des cycles
en liaison avec les tableaux de points (voir manuel d'utilisation des
cycles)
„ Dans la fonction DECLARE CONTOUR, il est maintenant possible de
définir également la profondeur de ce contour (voir manuel
d'utilisation des cycles)
„ Un nouveau cycle d'usinage 241 avec foret mono lèvre été ajouté
(voir manuel d'utilisation des cycles)
„ Des nouveaux cycles d'usinage 251 à 257 pour le fraisage de
poches, tenons et rainures ont été ajoutés (voir manuel d'utilisation
des cycles)
„ Le cycle palpeur 416 (initialisation du point d'origine au centre d'un
cercle de trous) a été étendu avec le paramètre Q320 (distance
d'approche) (voir Manuel d'utilisation des cycles)
„ Cycles palpeurs 412, 413, 421 et 422: paramètre supplémentaire
Q365 Type déplacement (voir Manuel d'utilisation des cycles)
„ Le cycle palpeur 425 (Mesure d'une rainure) a été étendu avec le
paramètre Q301 (exécuter ou ne pas exécuter un positionnement
intermédiaire à la hauteur de sécurité) (voir Manuel d'utilisation des
cycles)
„ Cycles palpeurs 408 à 419 : lors de la configuration de l'affichage, la
TNC inscrit également le point d'origine sur la ligne 0 du tableau
Preset (voir Manuel d'utilisation des cycles)
„ Dans les modes de fonctionnement Exécution de programme en
continu et Exécution de programme pas à pas, il est possible
maintenant de sélectionner les tableaux de points zéro (ETAT M)
„ Lors de la définition des avances dans les cycles d'usinage, il est
possible maintenant de définir les valeurs FU et FZ (voir Manuel
d'utilisation des cycles)
HEIDENHAIN TNC 320
9
Nouvelles fonctions du logiciel 340 55x-04
Nouvelles fonctions du logiciel
340 55x-04
„ Dans le cycle 22, vous pouvez maintenant définir un nom d'outil
pour l'outil d'évidement (voir Manuel d'utilisation des cycles)
„ L'affichage d’état auxiliaire a été refondu. Les extensions suivantes
ont été réalisées (voir „Affichage d'état supplémentaire” à la page
67):
„ Création d'une nouvelle table des matières indiquant les
principaux affichages d'état
„ Les valeurs définies avec le cycle 32 Tolérance sont affichées
„ Les cycles de fraisage de poches, tenons et rainures 210 à 214 ont
été retirés de la barre de softkeys standard (CYCL DEF >
POCHES/TENONS/RAINURES). Pour des raisons de compatibilité,
ces cycles restent toutefois disponibles et on peut les appeler avec
la touche GOTO
„ Le cycle 25 Tracé de contour permet maintenant de programmer
également des contours fermés
„ Lors du réaccostage dans un programme, il est désormais possible
d'exécuter des changements d'outils
„ Avec FN16 F-Print, il est maintenant possible de restituer des textes
en fonction de la langue
„ La structure des softkeys de la fonction SPEC FCT a été modifiée et
adaptée à l'iTNC 530
10
Nouvelles fonctions du logiciel 340 55x-05
Nouvelles fonctions du logiciel
340 55x-05
„ La fonction M101 a été ajoutée(voir „Changement d'outil
automatique lors du dépassement de la durée d'utilisation : M101”
à la page 150).
„ Les tableaux d'outils de l'TNC 530 peuvent maintenant être lus par
la TNC 320 et convertis dans une format correct(voir „Importer un
tableau d'outils” à la page 144).
„ La fonction CYCL CALL POS a été ajoutée (voir manuel d'utilisation
des cycles)
„ Les paramètres Q locaux et rémanents QL et QR ont été ajoutés(voir
„Principe et vue d’ensemble des fonctions” à la page 230).
„ Un seul test d'utilisation d'outils peut avoir lieu avant le start du
programme (voir „Test d'utilisation des outils” à la page 151).
„ La fonction M138 Sélectionner les axes inclinés a été ajoutée (voir
„Sélection d'axes inclinés: M138” à la page 367).
„ Fonctions de fichiers ont été ajoutées (voir „Fonctions de fichiers”
à la page 333).
„ La fonction „Définir les transformations de coordonnées“ a été
ajoutée (voir „Définir les transformations de coordonnées” à la page
334).
Fonctions modifiées du logiciel
340 55x-05
„ L'affichage d’état pour les paramètres Q a été refondu. (voir
„Contrôler et modifier les paramètres Q” à la page 241)
„ Dans le tableau d'outils, la colonne LAST_USE a été ajoutée (voir
„Tableau d'outils : données d'outils standard” à la page 138)
„ La simulation graphique a été modifiée et adaptée à l'iTNC 530 (voir
„Graphiques” à la page 412)
„ Les cycles de palpage peuvent être utilisés également avec le plan
incliné (voir manuel de programmation des cycles).
HEIDENHAIN TNC 320
11
12
Fonctions modifiées du logiciel 340 55x-05
Table des matières
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Premier pas avec la TNC 320
Introduction
Programmation : Principes de base,
Gestionnaire de fichiers
Programmation : aides à la
programmation
Programmation : outils
Programmation : programmer les
contours
Programmation : sous-programmes et
répétitions de parties de programme
Programmation : paramètres Q
Programmation : fonctions auxiliaires
Programmation : fonctions spéciales
Programmation : usinage multiaxes
Mode manuel et réglages
Positionnement avec introduction
manuelle
Test de programme et Exécution de
programme
Fonctions MOD
Tableaux et sommaires
HEIDENHAIN TNC 320
13
1 Premier pas avec la TNC 320 ..... 35
1.1 Tableau récapitulatif ..... 36
1.2 Mise sous tension de la machine ..... 37
Acquitter la coupure d'alimentation et passer sur les points de référence ..... 37
1.3 Programmer la première pièce ..... 38
Sélectionner le mode de fonctionnement adéquat ..... 38
Les principaux éléments de commande de la TNC ..... 38
Ouvrir un nouveau programme/gestionnaire de fichiers ..... 39
Définir une pièce brute ..... 40
Structure du programme ..... 41
Programmer un contour simple ..... 42
Créer un programme avec cycle ..... 45
1.4 Contrôler graphiquement la première pièce ..... 48
Choisir le bon mode de fonctionnement ..... 48
Sélectionner le tableau d'outils pour le test du programme ..... 48
Sélectionner le programme que vous souhaitez tester ..... 49
Sélectionner le partage d'écran et la vue ..... 49
Lancer le test de programme ..... 50
1.5 Configuration des outils ..... 51
Choisir le mode de fonctionnement adéquat ..... 51
Préparation et étalonnage des outils ..... 51
Le tableau d'outils TOOL.T ..... 51
Le tableau d'emplacements TOOL_P.TCH ..... 52
1.6 Dégauchir la pièce ..... 53
Choisir le mode de fonctionnement adéquat ..... 53
Brider la pièce ..... 53
Dégauchir la pièce avec un palpeur 3D ..... 54
Initialisation du point d'origine avec palpeur 3D ..... 55
1.7 Exécuter le premier programme ..... 56
Choisir le mode de fonctionnement adéquat ..... 56
Sélectionner le programme que vous souhaitez exécuter ..... 56
Lancer le programme ..... 56
HEIDENHAIN TNC 320
15
2 Introduction ..... 57
2.1 La TNC 320 ..... 58
Programmation : conversationnel Texte clair HEIDENHAIN et DIN/ISO ..... 58
Compatibilité ..... 58
2.2 Ecran et pupitre de commande ..... 59
Ecran ..... 59
Définir le partage de l'écran ..... 60
Pupitre de commande ..... 61
2.3 Modes de fonctionnement ..... 62
Mode Manuel et Manivelle électronique ..... 62
Positionnement avec introduction manuelle ..... 62
Mémorisation/Edition de programme ..... 63
Test de programme ..... 63
Exécution de programme en continu et Exécution de programme pas à pas ..... 64
2.4 Affichages d'état ..... 65
Affichage d'état „général“ ..... 65
Affichage d'état supplémentaire ..... 67
2.5 Accessoires : Palpeurs 3D et manivelles électroniques HEIDENHAIN ..... 74
Palpeurs 3D ..... 74
Manivelles électroniques HR ..... 75
16
3 Programmation : principes de base, gestionnaire de fichiers ..... 77
3.1 Principes de base ..... 78
Systèmes de mesure de déplacement et marques de référence ..... 78
Système de référence ..... 78
Système de référence sur fraiseuses ..... 79
Désignation des axes des fraiseuses ..... 79
Coordonnées polaires ..... 80
Positions absolues et positions incrémentales sur une pièce ..... 81
Sélection du point d'origine ..... 82
3.2 Ouverture et introduction de programmes ..... 83
Structure d'un programme CN en dialogue conversationnel HEIDENHAIN ..... 83
Définition de la pièce brute: BLK FORM ..... 83
Ouvrir un nouveau programme d'usinage ..... 84
Programmation de déplacements d'outils en dialogue conversationnel Texte clair ..... 86
Validation des positions effectives (transfert des points courants) ..... 88
Editer un programme ..... 89
La fonction de recherche de la TNC ..... 93
3.3 Gestionnaire de fichiers : principes de base ..... 95
Fichiers ..... 95
Sauvegarde des données ..... 96
3.4 Travailler avec le gestionnaire de fichiers ..... 97
Répertoires ..... 97
Chemins d'accès ..... 97
Vue d'ensemble : fonctions du gestionnaire de fichiers ..... 98
Appeler le gestionnaire de fichiers ..... 99
Sélectionner les lecteurs, répertoires et fichiers ..... 100
Créer un nouveau répertoire ..... 102
Créer un nouveau répertoire ..... 102
Copier un fichier donné ..... 103
Copier un fichier vers un autre répertoire ..... 103
Copier un répertoire ..... 103
Sélectionner l'un des derniers fichiers sélectionnés ..... 104
Effacer un fichier ..... 104
Effacer un répertoire ..... 105
Marquer des fichiers ..... 106
Renommer un fichier ..... 107
Classer les fichiers ..... 107
Autres fonctions ..... 108
Transfert des données vers/à partir d'un support externe de données ..... 109
La TNC en réseau ..... 111
Périphériques USB sur la TNC ..... 112
HEIDENHAIN TNC 320
17
4 Programmation : aides à la programmation ..... 113
4.1 Clavier virtuel ..... 114
Introduire le texte avec le clavier virtuel ..... 114
4.2 Insertion de commentaires ..... 115
Application ..... 115
Commentaire dans une séquence donnée ..... 115
Fonctions lors d'édition de commentaire ..... 116
4.3 Articulation de programmes ..... 117
Définition, application ..... 117
Afficher la fenêtre d’articulation / changer de fenêtre active ..... 117
Insérer une séquence d’articulation dans la fenêtre du programme (à gauche) ..... 117
Sélectionner des séquences avec la fenêtre d’articulations ..... 117
4.4 La calculatrice ..... 118
Utilisation ..... 118
4.5 Graphique de programmation ..... 120
Graphique de programmation simultané/non simultané ..... 120
Exécution du graphique en programmation d'un programme existant ..... 120
Afficher ou non les numéros de séquence ..... 121
Effacer le graphique ..... 121
Agrandissement ou réduction d'une découpe ..... 121
4.6 Messages d'erreur ..... 122
Afficher les erreurs ..... 122
Ouvrir la fenêtre des messages d'erreur ..... 122
Fermer la fenêtre de messages d'erreur ..... 122
Messages d'erreur détaillés ..... 123
Softkey INFO INTERNE ..... 123
Effacer l'erreur ..... 124
Protocole d'erreurs ..... 124
Protocole des touches ..... 125
Textes d'assistance ..... 126
Mémoriser les fichiers de maintenance ..... 126
Appeler le système d'aide TNCguide ..... 126
4.7 Système d'aide contextuelle TNCguide ..... 127
Application ..... 127
Travailler avec le TNCguide ..... 128
Télécharger les fichiers d'aide actualisés ..... 132
18
5 Programmation : outils ..... 133
5.1 Introduction des données d’outils ..... 134
Avance F ..... 134
Vitesse de rotation broche S ..... 135
5.2 Données d'outils ..... 136
Conditions requises pour la correction d'outil ..... 136
Numéro d'outil, nom d'outil ..... 136
Longueur d'outil L ..... 136
Rayon d'outil R ..... 136
Valeurs Delta pour longueurs et rayons ..... 137
Introduire les données d'outils dans le programme ..... 137
Introduire les données d'outils dans le tableau ..... 138
Importer un tableau d'outils ..... 144
Tableau d'emplacements pour changeur d'outils ..... 145
Appeler les données d'outils ..... 148
Changement d'outil ..... 149
Test d'utilisation des outils ..... 151
5.3 Correction d'outil ..... 154
Introduction ..... 154
Correction de la longueur d'outil ..... 154
Correction du rayon d'outil ..... 155
HEIDENHAIN TNC 320
19
6 Programmation : programmer les contours ..... 159
6.1 Déplacements d'outils ..... 160
Fonctions de contournage ..... 160
Programmation de contour libre FK (Option logiciel Advanced programming features) ..... 160
Fonctions auxiliaires M ..... 160
Sous-programmes et répétitions de parties de programme ..... 160
Programmation avec paramètres Q ..... 160
6.2 Principes de base des fonctions de contournage ..... 161
Programmer un déplacement d’outil pour un usinage ..... 161
6.3 Approche et sortie du contour ..... 165
Récapitulatif : formes de trajectoires pour accoster et quitter le contour ..... 165
Positions importantes en approche et en sortie ..... 166
Approche sur une droite avec raccordement tangentiel : APPR LT ..... 168
Approche sur une droite perpendiculaire au premier point du contour : APPR LN ..... 168
Approche avec une trajectoire circulaire avec raccordement tangentiel : APPR CT ..... 169
Approche avec une trajectoire circulaire, raccordement tangentiel au contour et segment de droite : APPR
LCT ..... 170
Sortie du contour par une droite avec raccordement tangentiel : DEP LT ..... 171
Sortir du contour avec une droite perpendiculaire au dernier élément du contour : DEP LN ..... 171
Sortie du contour avec une trajectoire circulaire et raccordement tangentiel : DEP CT ..... 172
Sortie avec une trajectoire circulaire, raccordement tangentiel au contour et segment de droite : DEP LCT ..... 172
6.4 Contournages - Coordonnées cartésiennes ..... 173
Vue d’ensemble des fonctions de contournage ..... 173
Droite L ..... 174
Insérer un chanfrein entre deux droites ..... 175
Arrondi d'angle RND ..... 176
Centre de cercle CCI ..... 177
Trajectoire circulaire C et centre de cercle CC ..... 178
Trajectoire circulaire CR de rayon défini ..... 179
Trajectoire circulaire CT avec raccordement tangentiel ..... 181
6.5 Contournages – Coordonnées polaires ..... 186
Vue d'ensemble ..... 186
Origine des coordonnées polaires : pôle CC ..... 187
Droite LP ..... 187
Trajectoire circulaire CP avec pôle CC ..... 188
Trajectoire circulaire CTP avec raccordement tangentiel ..... 189
Trajectoire hélicoïdale (hélice) ..... 190
20
6.6 Programmation de contour libre FK (Option logiciel Advanced programming features) ..... 194
Principes de base ..... 194
Graphique de programmation FK ..... 196
Ouvrir le dialogue FK ..... 197
Pôle pour programmation FK ..... 198
Droites FK ..... 198
Trajectoires circulaires FK ..... 199
Possibilités d'introduction ..... 200
Points auxiliaires ..... 204
Rapports relatifs ..... 205
HEIDENHAIN TNC 320
21
7 Programmation : sous-programmes et répétitions de parties de programme ..... 213
7.1 Identifier les sous-programmes et répétitions de parties de programme ..... 214
Label ..... 214
7.2 Sous-programmes ..... 215
Mode opératoire ..... 215
Remarques sur la programmation ..... 215
Programmer un sous-programme ..... 215
Appeler un sous-programme ..... 215
7.3 Répétitions de parties de programme ..... 216
Label LBL ..... 216
Mode opératoire ..... 216
Remarques sur la programmation ..... 216
Programmer une répétition de partie de programme ..... 216
Programmer une répétition de partie de programme ..... 216
7.4 Programme quelconque utilisé comme sous-programme ..... 217
Mode opératoire ..... 217
Remarques sur la programmation ..... 217
Programme quelconque utilisé comme sous-programme ..... 218
7.5 Imbrications ..... 219
Types d'imbrications ..... 219
Niveaux d'imbrication ..... 219
Sous-programme dans sous-programme ..... 220
Renouveler des répétitions de parties de programme ..... 221
Répéter un sous-programme ..... 222
7.6 Exemples de programmation ..... 223
22
8 Programmation : Paramètres Q ..... 229
8.1 Principe et vue d’ensemble des fonctions ..... 230
Remarques concernant la programmation ..... 231
Appeler les fonctions des paramètres Q ..... 232
8.2 Familles de pièces – Paramètres Q à la place de valeurs numériques ..... 233
Application ..... 233
8.3 Décrire les contours avec les fonctions mathématiques ..... 234
Application ..... 234
Tableau récapitulatif ..... 234
Programmation des calculs de base ..... 235
8.4 Fonctions trigonométriques ..... 236
Définitions ..... 236
Programmer les fonctions trigonométriques ..... 237
8.5 Calculs d'un cercle ..... 238
Application ..... 238
8.6 Sauts conditionnels avec paramètres Q ..... 239
Application ..... 239
Sauts inconditionnels ..... 239
Programmer les sauts conditionnels ..... 239
Abréviations et expressions utilisées ..... 240
8.7 Contrôler et modifier les paramètres Q ..... 241
Procédure ..... 241
8.8 Fonctions spéciales ..... 242
Résumé ..... 242
FN 14: ERROR: Emission de messages d'erreur ..... 243
FN 16: F-PRINT : émission formatée de textes et valeurs de paramètres Q ..... 248
FN 18: SYS-DATUM READ ..... 252
FN 19: PLC : transférer de valeurs au PLC ..... 262
FN 20: WAIT FOR: Synchroniser CN et PLC ..... 262
FN 29: PLC: Transférer valeurs au PLC ..... 263
FN37: EXPORT ..... 264
8.9 Accès aux tableaux avec instructions SQL ..... 265
Introduction ..... 265
Une transaction ..... 266
Programmation d'instructions SQL ..... 268
Tableau récapitulatif des softkeys ..... 268
SQL BIND ..... 269
SQL SELECT ..... 270
SQL FETCH ..... 273
SQL UPDATE ..... 274
SQL INSERT ..... 274
SQL COMMIT ..... 275
SQL ROLLBACK ..... 275
HEIDENHAIN TNC 320
23
8.10 Introduire directement une formule ..... 276
Introduire une formule ..... 276
Règles de calculs ..... 278
Exemple d'introduction ..... 279
8.11 Paramètres string ..... 280
Fonctions de traitement de strings ..... 280
Affecter les paramètres string ..... 281
Chaîner des paramètres string ..... 282
Convertir une valeur numérique en paramètre string ..... 283
Copier une partie de string à partir d’un paramètre string ..... 284
Convertir un paramètre string en une valeur numérique ..... 285
Vérification d’un paramètre string ..... 286
Déterminer la longueur d’un paramètre string ..... 287
Comparer la suite alphabétique ..... 288
Lire un paramètre-machine ..... 289
8.12 Paramètres Q réservés ..... 292
Valeurs issues du PLC : Q100 à Q107 ..... 292
Rayon d'outil actif : Q108 ..... 292
Axe d’outil : Q109 ..... 293
Etat de la broche : Q110 ..... 293
Arrosage : Q111 ..... 293
Facteur de recouvrement : Q112 ..... 293
Unité de mesure dans le programme : Q113 ..... 294
Longueur d’outil : Q114 ..... 294
Coordonnées issues du palpage pendant l’exécution du programme ..... 294
Ecart entre valeur nominale et valeur effective lors de l'étalonnage d'outil automatique avec le TT 130 ..... 295
Inclinaison du plan d'usinage avec angles de la pièce : coordonnées des axes rotatifs calculées par la TNC ..... 295
Résultats de la mesure avec cycles palpeurs (voir également Manuel d'utilisation des cycles palpeurs) ..... 296
8.13 Exemples de programmation ..... 298
24
9 Programmation : fonctions auxiliaires ..... 305
9.1 Introduire les fonctions M et STOP ..... 306
Principes de base ..... 306
9.2 Fonctions auxiliaires pour contrôler l'exécution du programme, la broche et l'arrosage ..... 307
Vue d'ensemble ..... 307
9.3 Fonctions auxiliaires pour données de coordonnées ..... 308
Programmer les coordonnées machine : M91/M92 ..... 308
Aborder les positions dans le système de coordonnées non incliné avec plan d'usinage incliné : M130 ..... 310
9.4 Fonctions auxiliaires pour le comportement de contournage ..... 311
Usinage de petits éléments de contour: M97 ..... 311
Usinage intégral d'angles de contour ouverts : M98 ..... 313
Facteur d’avance pour plongées : M103 ..... 314
Avance en millimètres/tour de broche : M136 ..... 315
Vitesse d'avance sur les arcs de cercle : M109/M110/M111 ..... 315
Calcul anticipé d'un contour avec correction de rayon (LOOK AHEAD): M120 ..... 316
Superposition de la manivelle pendant l'exécution du programme: M118 ..... 318
Dégagement du contour dans le sens de l'axe d'outil : M140 ..... 319
Annuler la surveillance du palpeur : M141 ..... 320
Dégager automatiquement l'outil du contour lors d'un stop CN : M148 ..... 321
HEIDENHAIN TNC 320
25
10 Programmation : fonctions spéciales ..... 323
10.1 Aperçu des fonctions spéciales ..... 324
Menu principal fonctions spéciales SPEC FCT ..... 324
Menu pré-définition de paramètres ..... 325
Menu des fonctions pour l'usinage de contours et de points ..... 325
Menu de définition de diverses fonctions conversationnelles Texte clair ..... 326
10.2 Travailler avec les axes parallèles U. V et W ..... 327
Tableau récapitulatif ..... 327
AFFICHAGE FONCTION PARAXCOMP ..... 328
FONTION PARAXCOMP MOVE ..... 329
FONTION PARAXCOMP OFF ..... 330
FONTION PARAXMODE ..... 330
FONCTION PARAXMODE OFF ..... 332
10.3 Fonctions de fichiers ..... 333
Application ..... 333
Définir les opérations sur les fichiers ..... 333
10.4 Définir les transformations de coordonnées ..... 334
Résumé ..... 334
TRANS DATUM AXIS ..... 334
TRANS DATUM TABLE ..... 335
TRANS DATUM RESET ..... 335
10.5 Créer des fichiers-texte ..... 336
Application ..... 336
Ouvrir et quitter un fichier-texte ..... 336
Editer des textes ..... 337
Effacer des caractères, mots et lignes et les insérer à nouveau ..... 338
Modifier des blocs de texte ..... 339
Recherche de parties de texte ..... 340
26
11 Programmation : usinage multiaxes ..... 341
11.1 Fonctions réservées à l'usinage multiaxes ..... 342
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1) ..... 343
Introduction ..... 343
Définir la fonction PLANE ..... 345
Affichage de positions ..... 345
Annulation de la fonction PLANE ..... 346
Définir le plan d'usinage avec les angles dans l'espace : PLANE SPATIAL ..... 347
Définir le plan d'usinage avec les angles de projection : PLAN PROJETE ..... 349
Définir le plan d'usinage avec les angles d'Euler : PLANE EULER ..... 351
Définir le plan d'usinage par deux vecteurs : PLANE VECTOR ..... 353
Définir le plan d'usinage par trois points : PLANE POINTS ..... 355
Définir le plan d'usinage au moyen d'un seul angle incrémental dans l'espace : PLANE RELATIVE ..... 357
Plan d'usinage défini avec angles d'axes : PLANE AXIAL (fonction FCL 3) ..... 358
Définir le comportement de positionnement de la fonction PLANE ..... 360
11.3 Fonctions auxiliaires pour les axes rotatifs ..... 364
Avance en mm/min. sur les axes rotatifs A, B, C: M116 (option de logiciel 1) ..... 364
Déplacement des axes rotatifs avec optimisation de la course : M126 ..... 365
Réduire l'affichage de l'axe rotatif à une valeur inférieure à 360° : M94 ..... 366
Sélection d'axes inclinés: M138 ..... 367
Validation de la cinématique de la machine pour les positions EFF/NOM en fin de séquence: M144 (option de
logiciel 2) ..... 368
HEIDENHAIN TNC 320
27
12 Mode manuel et dégauchissage ..... 369
12.1 Mise sous tension, Mise hors tension ..... 370
Mise sous tension ..... 370
Mise hors tension ..... 372
12.2 Déplacement des axes de la machine ..... 373
Remarque ..... 373
Déplacer l'axe avec les touches de sens externes ..... 373
Positionnement pas à pas ..... 374
Déplacement avec la manivelle électronique HR 410 ..... 375
12.3 Vitesse de rotation broche S, avance F, fonction auxiliaire M ..... 376
Application ..... 376
Introduction de valeurs ..... 376
Modifier la vitesse de rotation broche et l'avance ..... 377
12.4 Initialisation du point d'origine sans palpeur 3D ..... 378
Remarque ..... 378
Préparatif ..... 378
Initialiser le point d'origine avec les touches d'axes ..... 379
Gestion des points d'origine avec le tableau Preset ..... 380
12.5 Utilisation d'un palpeur 3D ..... 386
Vue d'ensemble ..... 386
Sélectionner le cycle palpeur ..... 386
Enregistrer les valeurs de mesure issues des cycles palpeurs dans un tableau de points zéro ..... 387
Enregistrer les valeurs de mesure issues des cycles palpeurs dans le tableau Preset ..... 387
12.6 Etalonner le palpeur 3D ..... 388
Introduction ..... 388
Etalonnage de la longueur effective ..... 389
Etalonner le rayon effectif et compenser le désaxage du palpeur ..... 390
Afficher la valeur d'étalonnage ..... 391
12.7 Compensation du désaxage de la pièce avec un palpeur 3D ..... 392
Introduction ..... 392
Déterminer la rotation de base ..... 393
Mémoriser la rotation de base dans le tableau Preset ..... 393
Afficher la rotation de base ..... 393
Annuler la rotation de base ..... 393
28
12.8 Initialisation du point d'origine avec palpeur 3D ..... 394
Tableau récapitulatif ..... 394
Initialiser le point d'origine sur un axe au choix ..... 394
Coin pris comme point d'origine ..... 395
Centre de cercle pris comme point d'origine ..... 396
Mesure de pièces avec -palpeur 3D ..... 397
Fonctions de palpage avec palpeurs mécaniques ou comparateurs ..... 400
12.9 Inclinaison du plan d'usinage (option logiciel 1) ..... 401
Application, mode opératoire ..... 401
Franchissement des points de référence avec axes inclinés ..... 403
Affichage de positions dans le système incliné ..... 403
Restrictions pour l'inclinaison du plan d'usinage ..... 403
Activation manuelle de l'inclinaison ..... 404
HEIDENHAIN TNC 320
29
13 Positionnement avec introduction manuelle ..... 405
13.1 Programmation et exécution d'opérations simples d'usinage ..... 406
Exécuter le positionnement avec introduction manuelle ..... 406
Sauvegarder ou effacer des programmes contenus dans $MDI ..... 409
30
14 Test de programme et Exécution de programme ..... 411
14.1 Graphiques ..... 412
Application ..... 412
Régler la vitesse du test du programme ..... 413
Vue d'ensemble : vues ..... 414
Vue de dessus ..... 414
Représentation dans 3 plans ..... 415
Représentation 3D ..... 416
Agrandissement de la découpe ..... 418
Répéter la simulation graphique ..... 419
Afficher l'outil ..... 419
Calcul du temps d'usinage ..... 420
14.2 Représenter la pièce brute dans la zone d'usinage ..... 421
Application ..... 421
14.3 Fonctions d'affichage du programme ..... 422
Vue d'ensemble ..... 422
14.4 Test de programme ..... 423
Application ..... 423
14.5 Exécution de programme ..... 426
Utilisation ..... 426
Exécuter un programme d’usinage ..... 427
Interrompre l'usinage ..... 428
Déplacer les axes de la machine pendant une interruption ..... 429
Reprendre l’exécution du programme après un arrêt d'usinage ..... 430
Reprendre le programme à un endroit quelconque (amorce de séquence) ..... 432
Réaccoster le contour ..... 435
14.6 Lancement automatique du programme ..... 436
Application ..... 436
14.7 Sauter des séquences ..... 437
Application ..... 437
Insérer le caractère „/“ ..... 437
Effacer le caractère „/“ ..... 437
14.8 Arrêt optionnel programmé ..... 438
Application ..... 438
HEIDENHAIN TNC 320
31
15 Fonctions MOD ..... 439
15.1 Sélectionner la fonction MOD ..... 440
Sélectionner les fonctions MOD ..... 440
Modifier les configurations ..... 440
Quitter les fonctions MOD ..... 440
Vue d'ensemble des fonctions MOD ..... 441
15.2 Numéros de logiciel ..... 442
Application ..... 442
15.3 Introduire un code ..... 443
Application ..... 443
15.4 Configurer les interfaces de données ..... 444
Interface série de la TNC 320 ..... 444
Application ..... 444
Configurer l'interface RS-232 ..... 444
Régler le TAUX EN BAUDS (baudRate) ..... 444
Configurer le protocole (protocole) ..... 444
Configurer les bits de données (dataBits) ..... 445
Vérifier la parité (parity) ..... 445
Configurer les bits de stop (stopBits) ..... 445
Configurer le handshake (contrôle de flux) ..... 445
Configuration de la transmission des données avec le logiciel TNCserver pour PC ..... 446
Sélectionner le mode de fonctionnement du périphérique (système de fichier) ..... 446
Logiciel de transmission de données ..... 447
15.5 Interface Ethernet ..... 449
Introduction ..... 449
Possibilités de raccordement ..... 449
Connecter la commande au réseau ..... 450
15.6 Sélectionner les affichages de positions ..... 455
Application ..... 455
15.7 Sélectionner l’unité de mesure ..... 456
Application ..... 456
15.8 Afficher les durées de fonctionnement ..... 457
Application ..... 457
32
16 Tableaux et récapitulatifs ..... 459
16.1 Paramètres utilisateur spécifiques de la machine ..... 460
Application ..... 460
16.2 Repérage des broches et câbles pour les interfaces de données ..... 468
Interface V.24/RS-232-C, appareils HEIDENHAIN ..... 468
Appareils autres que HEIDENHAIN ..... 469
Prise femelle RJ45 pour Interface Ethernet ..... 469
16.3 Informations techniques ..... 470
16.4 Changement de la pile tampon ..... 475
HEIDENHAIN TNC 320
33
34
Premier pas avec la
TNC 320
-
1.1 Tableau récapitulatif
1.1 Tableau récapitulatif
Ce chapitre est destiné à aider les débutants TNC à maitriser
rapidement les fonctionnalités les plus importantes de la TNC. Vous
trouverez de plus amples informations sur chaque sujet dans la
description correspondante concernée.
Les thèmes suivants sont traités dans ce chapitre :
„ Mise sous tension de la machine
„ Programmer la première pièce
„ Contrôler graphiquement la première pièce
„ Configurer les outils
„ Dégauchir la pièce
„ Exécuter le premier programme
36
Premier pas avec la TNC 320
1.2 Mise sous tension de la machine
1.2 Mise sous tension de la
machine
Acquitter la coupure d'alimentation et passer sur
les points de référence
La mise sous tension et le passage sur les points de
référence sont des fonctions qui dépendent de la machine.
Consultez également le manuel de votre machine.
U
Mettre sous tension la TNC et la machine : la TNC lance le système
d'exploitation. Cette phase peut durer quelques minutes. La TNC
affiche ensuite en haut de l'écran l'information de coupure
d'alimentation
U Appuyer sur la touche CE : la TNC compile le
programme PLC
U
Mettre la commande sous tension : la TNC vérifie la
fonction d'arrêt d'urgence et passe en mode de
passage sur les points de référence
U
Passer sur les points de référence dans l'ordre
prédéfini : pour chaque axe, appuyer sur la touche
externe START. Si votre machine est équipée de
systèmes de mesure linéaire et angulaire absolus,
cette phase de passage sur les points de référence
n'existe pas
La TNC est maintenant opérationnelle et se trouve en mode Manuel.
Informations détaillées sur ce thème
„ Passer sur les points de référence : voir „Mise sous tension”, page
370
„ Modes de fonctionnement : voir „Mémorisation/Edition de
programme”, page 63
HEIDENHAIN TNC 320
37
1.3 Programmer la première pièce
1.3 Programmer la première pièce
Sélectionner le mode de fonctionnement
adéquat
La création de programmes n'est possible qu'en mode
Mémorisation/Edition de programme :
U
Appuyer sur la touche des modes de fonctionnement
: la TNC passe en mode Mémorisation/édition de
programme
Informations détaillées sur ce thème
„ Modes de fonctionnement : voir „Mémorisation/Edition de
programme”, page 63
Les principaux éléments de commande de la
TNC
Fonctions du mode conversationnel
Touche
Valider la saisie et activer la question de dialogue
suivante
Sauter la question de dialogue
Fermer prématurément le dialogue
Interrompre le dialogue, ignorer les données
introduites
Softkeys de l'écran vous permettant de
sélectionner une fonction qui dépend du mode
de fonctionnement en cours
Informations détaillées sur ce thème
„ Créer et modifier les programmes : voir „Editer un programme”,
page 89
„ Vue d'ensemble des touches : voir „Eléments de commande de la
TNC”, page 2
38
Premier pas avec la TNC 320
1.3 Programmer la première pièce
Ouvrir un nouveau programme/gestionnaire de
fichiers
U
Appuyer sur la touche PGM MGT : la TNC ouvre le
gestionnaire de fichiers. Le gestionnaire de fichiers
de la TNC est structuré de la même manière que
l'explorateur Windows sur PC. Avec le gestionnaire
de fichiers, vous gérez les données du disque dur de
la TNC
U
Avec les touches fléchées, sélectionnez le répertoire
dans lequel vous voulez créer un nouveau fichier
U
Introduisez un nom de fichier de votre choix avec
l'extension .H : la TNC ouvre alors automatiquement
un programme et vous demande d'indiquer l'unité de
mesure du nouveau programme
U
Choisir l'unité de mesure : appuyer sur MM ou INCH :
la TNC demande de définir la pièce brute (voir „Définir
une pièce brute” à la page 40)
La TNC génère automatiquement la première et la dernière séquence
du programme. Par la suite, vous ne pouvez plus modifier ces
séquences.
Informations détaillées sur ce thème
„ Gestion des fichiers : voir „Travailler avec le gestionnaire de
fichiers”, page 97
„ Créer un nouveau programme : voir „Ouverture et introduction de
programmes”, page 83
HEIDENHAIN TNC 320
39
1.3 Programmer la première pièce
Définir une pièce brute
Lorsqu'un nouveau programme est créé, la TNC ouvre
immédiatement la boîte de dialogue pour définir la pièce brute. Pour la
pièce brute, vous définissez toujours un parallélépipède en indiquant
les points MIN et MAX qui se réfèrent tous deux au point d'origine
sélectionné.
Lorsqu'un nouveau programme est créé, la TNC demande
automatiquement d'introduire les données nécessaires à la définition
de la pièce brute :
U
U
U
U
U
U
U
Plan d'usinage dans graphique : XY? : introduire l'axe de travail
de la broche. Z est défini par défaut, valider avec la touche ENT
Définition du brut : minimum X : introduire la plus petite
coordonnée X du brut par rapport au point d'origine, p. ex. 0 , puis
valider avec la touche ENT
Définition du brut : minimum Y : introduire la plus petite
coordonnée Y du brut par rapport au point d'origine, p. ex. 0 , puis
valider avec la touche ENT
Définition du brut : minimum Z : introduire la plus petite
coordonnée Z du brut par rapport au point d'origine, p. ex. -40 , puis
valider avec la touche ENT
Définition du brut : maximum X : introduire la plus grande
coordonnée X du brut par rapport au point d'origine, p. ex. 100 , puis
valider avec la touche ENT
Définition du brut : maximum Y : introduire la plus grande
coordonnée Y du brut par rapport au point d'origine, p. ex. 100 , puis
valider avec la touche ENT
Définition du brut : maximum Z : introduire la plus grande
coordonnée Z du brut par rapport au point d'origine, p. ex. 0 , puis
valider avec la touche ENT
Exemple de séquences CN
Z
MAX
Y
100
X
0
-40
100
MIN
0
0 BEGIN PGM NOUV MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-40
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 END PGM NOUV MM
Informations détaillées sur ce thème
„ Définir la pièce brute : (voir page 84)
40
Premier pas avec la TNC 320
1.3 Programmer la première pièce
Structure du programme
Dans la mesure du possible, les programmes d'usinage doivent être
toujours structurés de la même manière. Ceci améliore la vue
d'ensemble, accélère la programmation et réduit les sources
d'erreurs.
Structure de programme conseillée pour les opérations d'usinage
conventionnelles simples
1 Appeler l'outil, définir l'axe d'outil
2 Dégager l'outil
3 Prépositionnement dans le plan d'usinage, à proximité du point de
départ du contour
4 Prépositionner dans l'axe d'outil, au dessus de la pièce ou
directement à la profondeur; et si nécessaire, activer la
broche/l'arrosage
5 Aborder le contour
6 Usiner le contour
7 Quitter le contour
8 Dégager l'outil, terminer le programme
Exemple : Structure d'un programme de
contournage
0 BEGIN PGM EXPLCONT MM
1 BLK FORM 0.1 Z X... Y... Z...
2 BLK FORM 0.2 X... Y... Z...
3 TOOL CALL 5 Z S5000
4 L Z+250 R0 FMAX
5 L X... Y... R0 FMAX
6 L Z+10 R0 F3000 M13
Informations détaillées sur ce thème :
7 APPR ... RL F500
„ Programmation de contour : voir „Déplacements d'outils”, page 160
...
16 DEP ... X... Y... F3000 M9
17 L Z+250 R0 FMAX M2
18 END PGM EXPLCONT MM
Structure de programme conseillée pour des programmes
simples avec cycles
1 Appeler l'outil, définir l'axe d'outil
2 Dégager l'outil
3 Définir les positions d'usinage
4 Définir le cycle d'usinage
5 Appeler le cycle, activer la broche/l'arrosage
6 Dégager l'outil, terminer le programme
Exemple : Structure de programme avec cycles
0 BEGIN PGM EXPLCYC MM
1 BLK FORM 0.1 Z X... Y... Z...
2 BLK FORM 0.2 X... Y... Z...
3 TOOL CALL 5 Z S5000
Informations détaillées sur ce thème :
4 L Z+250 R0 FMAX
„ Programmation des cycles : voir Manuel d'utilisation des cycles
5 PATTERN DEF POS1( X... Y... Z... ) ...
6 CYCL DEF...
7 CYCL CALL PAT FMAX M13
8 L Z+250 R0 FMAX M2
9 END PGM EXPLCYC MM
HEIDENHAIN TNC 320
41
U
Appeler l'outil : Introduisez les données de l'outil.
Validez la saisie avec la touche ENT. Ne pas oublier
l'axe d'outil
U
Dégager l'outil : appuyer sur la touche d'axe orange Z
pour dégager l'axe d'outil et introduisez la valeur de la
position à atteindre, par exemple 250. Valider avec la
touche ENT
U
42
Y
10
3
95
2
1
5
Correct.rayon : RL/RR/sans corr.? Valider avec la
touche ENT : ne pas activer la correction de rayon
U
Avance F=? Valider avec la touche ENT : déplacement
en avance rapide (FMAX)
U
Fonction auxiliaire M? Valider avec la touche END :
la TNC mémorise la séquence de déplacement
U
Prépositionner l'outil dans le plan d'usinage : appuyez
sur la touche d'axe orange X et introduisez la valeur
de la position à atteindre, par exemple -20
U
Appuyez sur la touche d'axe orange Y et introduisez la
valeur correspondant à la position à atteindre, p. ex.
-20. Valider avec la touche ENT
U
Correct.rayon: RL/RR/sans corr.? Valider avec la
touche ENT : ne pas activer la correction de rayon
U
Avance F=? Valider avec la touche ENT : déplacement
en avance rapide (FMAX)
U
Fonction auxiliaire M? Valider avec la touche END :
la TNC mémorise la séquence de déplacement
U
Déplacer l'outil à la profondeur : appuyez sur la touche
d'axe orange et introduisez la valeur correspondant à
la position à atteindre, par exemple -5. Valider avec la
touche ENT
U
Correct.rayon: RL/RR/sans corr.? Valider avec la
touche ENT : ne pas activer la correction de rayon
U
Avance F=? Introduire l'avance de positionnement, par
ex. 3000 mm/min., valider avec la touche ENT
U
Fonction auxiliaire M? Mise en service de la broche
et de l'arrosage, par ex. M13, valider avec la touche
END : la TNC mémorise la séquence de déplacement
10
Le contour représenté sur la figure de droite doit être usiné en une
seule passe à la profondeur de 5 mm. La pièce brute a déjà été définie.
Après l'ouverture du dialogue avec une touche de fonction, introduisez
toutes les données demandées en haut de l'écran par la TNC.
4
20
5
20
1.3 Programmer la première pièce
Programmer un contour simple
X
9
Premier pas avec la TNC 320
Aborder le contour : appuyez sur la touche APPR/DEP
: la TNC affiche une barre de softkeys avec les
fonctions d'approche et de sortie du contour
U
Choisir la fonction d'approche APPR CT : indiquer les
coordonnées du point de départ du contour 1 en X et
Y, par exemple 5/5, valider avec la touche ENT
U
Angle au centre? Introduire l'angle d'approche, par
exemple 90°, valider avec la touche ENT
U
Rayon du cercle? Introduire le rayon d'approche, par
ex. 8 mm, valider avec la touche ENT
U
Correct.rayon: RL/RR/sans corr.? Valider avec la
softkey RL : activer la correction de rayon à gauche du
contour programmé
U
Avance F=? Introduire l'avance d'usinage, par ex. 700
mm/min., valider avec la touche END. Mémoriser les
données
U
Usiner le contour, aborder le point du contour 2 : Il
suffit d'introduire les informations qui varient, par
conséquent uniquement la coordonnée Y 95 et de
valider avec la touche END. Mémoriser les données
U
Aborder le point de contour 3 : introduire la
coordonnée X 95 et valider avec la touche END.
Mémoriser les données
U
Définir le chanfrein au point de contour 3 : introduire la
largeur 10 mm, mémoriser avec la touche END
U
Aborder le point de contour 4 : introduire la
coordonnée Y 5 et mémoriser avec la touche END
U
Définir le chanfrein au point de contour 4 : introduire la
largeur 20 mm, mémoriser avec la touche END
U
Aborder le point de contour 1 : introduire la
coordonnée X 5 et mémoriser avec la touche END
HEIDENHAIN TNC 320
1.3 Programmer la première pièce
U
43
1.3 Programmer la première pièce
U
Quitter le contour
U
Choisir la fonction DEP CT pour quitter le contour
U
Angle au centre? Introduire l'angle de sortie, par
exemple 90°, valider avec la touche ENT
U
Rayon du cercle? Introduire le rayon de sortie, par ex.
8 mm, valider avec la touche ENT
U
Avance F=? Introduire l'avance de positionnement, p.
ex. 3000 mm/min., mémoriser avec la touche ENT
U
Fonction auxiliaire M? Désactiver l'arrosage, par ex.
M9, valider avec la touche END : la TNC mémorise la
séquence de déplacement introduite
U
Dégager l'outil : appuyer sur la touche d'axe orange Z
pour dégager l'axe d'outil et introduisez la valeur de la
position à atteindre, p. ex. 250. Valider avec la touche
ENT
U
Correct.rayon : RL/RR/sans corr.? Valider avec la
touche ENT : ne pas activer la correction de rayon
U
Avance F=? Valider avec la touche ENT : déplacement
en avance rapide (FMAX)
U
Fonction auxiliaire M? Introduire M2 pour la fin du
programme, valider avec la touche END : la TNC
mémorise la séquence de déplacement
Informations détaillées sur ce thème
„ Exemple complet avec séquences CN : voir „Exemple :
déplacement linéaire et chanfreins en coordonnées cartésiennes”,
page 182
„ Créer un nouveau programme : voir „Ouverture et introduction de
programmes”, page 83
„ Approche/sortie des contours : voir „Approche et sortie du
contour”, page 165
„ Programmer les contours : voir „Vue d’ensemble des fonctions de
contournage”, page 173
„ Types d'avances programmables : voir „Possibilités d'introduction
de l'avance”, page 87
„ Correction du rayon d'outil : voir „Correction du rayon d'outil”, page
155
„ Fonctions auxiliaires M : voir „Fonctions auxiliaires pour contrôler
l'exécution du programme, la broche et l'arrosage”, page 307
44
Premier pas avec la TNC 320
1.3 Programmer la première pièce
Créer un programme avec cycle
Les trous sur la figure de droite (profondeur 20 mm) doivent être
usinés avec un cycle de perçage standard. La pièce brute a déjà été
définie.
U
Appeler l'outil : Introduisez les données de l'outil.
Validez la saisie avec la touche ENT, ne pas oublier
l'axe d'outil
U
Dégager l'outil : appuyer sur la touche d'axe orange Z
pour dégager l'axe d'outil et introduisez la valeur de la
position à atteindre, p. ex. 250. Valider avec la touche
ENT
U
Correct.rayon : RL/RR/sans corr.? Valider avec la
touche ENT : ne pas activer la correction de rayon
U
Avance F=? Valider avec la touche ENT : déplacement
en avance rapide (FMAX)
U
Fonction auxiliaire M? Valider avec la touche END :
la TNC mémorise la séquence de déplacement
U
Appeler le menu des cycles
U
Afficher les cycles de perçage
U
Sélectionner le cycle de perçage standard 200 : la TNC
ouvre la boîte de dialogue pour définir le cycle.
Introduisez successivement tous les paramètres
demandés par la TNC et validez chaque saisie avec la
touche ENT. Sur la partie droite de l'écran, la TNC
affiche également un graphique qui représente le
paramètre correspondant du cycle
HEIDENHAIN TNC 320
Y
100
90
10
10 20
80 90 100
X
45
1.3 Programmer la première pièce
46
U
Appeler le menu des fonctions spéciales
U
Afficher les fonctions d'usinage de points
U
Sélectionner la définition des motifs
U
Sélectionner la saisie des points : Introduisez les
coordonnées des 4 points, validez avec la touche ENT
Après avoir introduit le quatrième point, mémoriser la
séquence avec la touche END
U
Afficher le menu des appels du cycle
U
Exécuter le cycle de perçage sur le motif défini :
U
Avance F=? Valider avec la touche ENT : déplacement
en avance rapide (FMAX)
U
Fonction auxiliaire M? Mise en service de la broche
et de l'arrosage, par ex. M13, valider avec la touche
END : la TNC mémorise la séquence de déplacement
U
Dégager l'outil : appuyer sur la touche d'axe orange Z
pour dégager l'axe d'outil et introduisez la valeur de la
position à atteindre, p. ex. 250. Valider avec la touche
ENT
U
Correct.rayon : RL/RR/sans corr.? Valider avec la
touche ENT : ne pas activer la correction de rayon
U
Avance F=? Valider avec la touche ENT : déplacement
en avance rapide (FMAX)
U
Fonction auxiliaire M? Introduire M2 pour la fin du
programme, valider avec la touche END : la TNC
mémorise la séquence de déplacement
Premier pas avec la TNC 320
1.3 Programmer la première pièce
Exemple de séquences CN
0 BEGIN PGM C200 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-40
Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 5 Z S4500
Appel de l'outil
4 L Z+250 R0 FMAX
Dégager l'outil
5 PATTERN DEF
POS1 (X+10 Y+10
POS2 (X+10 Y+90
POS3 (X+90 Y+90
POS4 (X+90 Y+10
Définir les positions d'usinage
Z+0)
Z+0)
Z+0)
Z+0)
6 CYCL DEF 200 PERCAGE
Q200=2
;DISTANCE D'APPROCHE
Q201=-20
;PROFONDEUR
Q206=250
;AVANCE PLONGÉE PROF.
Q202=5
;PROFONDEUR DE PASSE
Q210=0
;TEMPO. EN HAUT
Q203=-10
;COORD. SURFACE PIÈCE
Q204=20
;SAUT DE BRIDE
Q211=0.2
;TEMPO. AU FOND
Définir le cycle
7 CYCL CALL PAT FMAX M13
Mise en service de la broche et de l'arrosage,
appeler le cycle
8 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
9 END PGM C200 MM
Informations détaillées sur ce thème
„ Créer un nouveau programme : voir „Ouverture et introduction de
programmes”, page 83
„ Programmation des cycles : voir Manuel d'utilisation des cycles
HEIDENHAIN TNC 320
47
1.4 Contrôler graphiquement la première pièce
1.4 Contrôler graphiquement la
première pièce
Choisir le bon mode de fonctionnement
Vous ne pouvez tester les programmes qu'en mode de
fonctionnement Test de programme:
U
Appuyer sur la touche des modes de
fonctionnement : la TNC passe en mode Test de
programme
Informations détaillées sur ce thème
„ Modes de fonctionnement de la TNC : voir „Modes de
fonctionnement”, page 62
„ Tester les programmes : voir „Test de programme”, page 423
Sélectionner le tableau d'outils pour le test du
programme
Vous ne devez exécuter cette étape que si aucun tableau d'outils n'a
été activé jusqu'à présent en mode de fonctionnement Test de
programme.
U
Appuyer sur la touche PGM MGT : la TNC ouvre le
gestionnaire de fichiers
U
Sélectionner la softkey SÉLECT. TYPE : la TNC affiche
une barre de softkeys qui vous permet de choisir le
type de fichier
U
Appuyer sur la softkey AFF. TOUS : dans la fenêtre de
droite, la TNC affiche tous les fichiers mémorisés
U
Déplacer la surbrillance sur l'arborescence des
répertoires, à gauche
U
Mettre en surbrillance le répertoire TNC:\
U
Déplacer la surbrillance sur les répertoires, à droite
U
Mettre en surbrillance le fichier TOOL.T (tableau
d'outils actif), valider avec la touche ENT : l'état S est
alors attribué à TOOL.T qui est ainsi activé pour le test
du programme
U
Appuyer sur la touche END : quitter le gestionnaire de
fichiers
Informations détaillées sur ce thème
„ Gestion des outils : voir „Introduire les données d'outils dans le
tableau”, page 138
„ Tester les programmes : voir „Test de programme”, page 423
48
Premier pas avec la TNC 320
1.4 Contrôler graphiquement la première pièce
Sélectionner le programme que vous souhaitez
tester
U
Appuyer sur la touche PGM MGT : la TNC ouvre le
gestionnaire de fichiers
U
Appuyer sur la softkey DERNIERS FICHIERS : la TNC
ouvre une fenêtre auxiliaire qui affiche les derniers
fichiers sélectionnés
U
Avec les touches fléchées, sélectionner le
programme que vous voulez tester; valider avec la
touche ENT
Informations détaillées sur ce thème
„ Sélectionner un programme : voir „Travailler avec le gestionnaire de
fichiers”, page 97
Sélectionner le partage d'écran et la vue
U
Appuyer sur la touche de sélection du partage de
l'écran : la TNC affiche toutes les possibilités
disponibles dans la barre de softkeys
U
Appuyer sur la softkey PGM + GRAPHISME : sur la
moitié gauche de l'écran, la TNC affiche le
programme et sur la moitié droite, la pièce brute
U
Sélectionner par softkey la vue souhaitée
U
Afficher la vue de dessus
U
Afficher la représentation dans 3 plans
U
Afficher la représentation 3D
Informations détaillées sur ce thème
„ Fonctions graphiques : voir „Graphiques”, page 412
„ Exécuter le test du programme : voir „Test de programme”, page
423
HEIDENHAIN TNC 320
49
1.4 Contrôler graphiquement la première pièce
Lancer le test de programme
U
Appuyer sur la softkey RESET + START: la TNC
exécute la simulation du programme actif jusqu'à une
interruption programmée ou jusqu'à la fin du
programme
U
En cours de simulation, vous pouvez commuter entre
les vues à l'aide des softkeys
U
Appuyer sur la softkey STOP : la TNC interrompt le
test du programme
U
Appuyer sur la softkey START : la TNC reprend le test
du programme après une interruption
Informations détaillées sur ce thème
„ Exécuter le test du programme : voir „Test de programme”, page
423
„ Fonctions graphiques : voir „Graphiques”, page 412
50
Premier pas avec la TNC 320
1.5 Configuration des outils
1.5 Configuration des outils
Choisir le mode de fonctionnement adéquat
Vous configurez les outils en mode de fonctionnement Manuel :
U
Appuyer sur la touche de mode de fonctionnement :
la TNC passe en mode de fonctionnement Manuel
Informations détaillées sur ce thème
„ Modes de fonctionnement de la TNC : voir „Modes de
fonctionnement”, page 62
Préparation et étalonnage des outils
U
U
U
Installer les outils nécessaires dans les mandrins respectifs
Etalonnage sur banc de préréglage d'outils : étalonner les outils,
noter la longueur et le rayon ou bien transmettre directement les
valeurs à la machine au moyen d'un logiciel de transmission
Dans le cas d'un étalonnage des outils sur la machine : installer les
outils dans le changeur (voir page 52)
Le tableau d'outils TOOL.T
Vous mémorisez les données d'outils telles que les longueurs et les
rayons dans la table d'outils TOOL.T (mémorisée dans TNC:\TABLE\;
ainsi que d'autres informations nécessaires à la TNC pour l'exécution
de diverses fonctions.
Pour introduire les données d'outils dans le tableau d'outils TOOL.T,
procédez de la façon suivante :
U
Afficher le tableau d'outils : la TNC représente le
tableau d'outils sous la forme d'un tableau
U
Modifier le tableau d'outils : mettre la softkey EDITER
sur ON
U
Avec les touches fléchées vers le bas ou vers le haut,
sélectionnez le numéro de l'outil que vous voulez
modifier
U
Avec les touches fléchées vers la droite ou vers la
gauche, sélectionnez les données d'outils que vous
voulez modifier
U
Quitter le tableau d'outils : appuyer sur la touche END
Informations détaillées sur ce thème
„ Modes de fonctionnement de la TNC : voir „Modes de
fonctionnement”, page 62
„ Travailler avec le tableau d'outils : voir „Introduire les données
d'outils dans le tableau”, page 138
HEIDENHAIN TNC 320
51
1.5 Configuration des outils
Le tableau d'emplacements TOOL_P.TCH
Le fonctionnement du tableau d'emplacements dépend de
la machine. Consultez également le manuel de votre
machine.
Vous définissez dans le tableau des emplacements TOOL_P.TCH
(mémorisé dans TNC:\TABLE\) quels outils équipent votre magasin
d'outils.
Pour introduire les données dans le tableau d'emplacements
TOOL_P.TCH, procédez de la manière suivante :
U
Afficher le tableau d'outils : la TNC représente les
caractéristiques des outils sous la forme d'un tableau
U
Afficher le tableau d'emplacements : la TNC affiche le
tableau d'emplacements sous la forme d'un tableau
U
Modifier le tableau d'emplacements : mettre la
softkey EDITER sur ON
U
Avec les touches fléchées vers le bas ou vers le haut,
sélectionnez le numéro d'emplacement que vous
voulez modifier
U
Avec les touches fléchées vers la droite ou vers la
gauche, sélectionnez les données que vous voulez
modifier
U
Quitter le tableau d'emplacements : appuyer sur la
touche END
Informations détaillées sur ce thème
„ Modes de fonctionnement de la TNC : voir „Modes de
fonctionnement”, page 62
„ Travailler avec le tableau d'emplacements : voir „Tableau
d'emplacements pour changeur d'outils”, page 145
52
Premier pas avec la TNC 320
1.6 Dégauchir la pièce
1.6 Dégauchir la pièce
Choisir le mode de fonctionnement adéquat
Vous dégauchissez les pièces en mode de fonctionnement Manuel ou
Manivelle électronique
U
Appuyer sur la touche de mode de fonctionnement :
la TNC passe en mode de fonctionnement Manuel
Informations détaillées sur ce thème
„ Le mode Manuel : voir „Déplacement des axes de la machine”,
page 373
Brider la pièce
Fixez la pièce sur la table de la machine au moyen d'un dispositif de
bridage. Si vous disposez sur votre machine d'un palpeur 3D,
l'opération de dégauchissage de la pièce est inutile.
Si vous ne disposez pas d'un palpeur 3D, vous devez dégauchir la
pièce pour qu'elle soit fixée parallèlement aux axes de la machine.
HEIDENHAIN TNC 320
53
1.6 Dégauchir la pièce
Dégauchir la pièce avec un palpeur 3D
U
Installer le palpeur 3D : en mode de fonctionnement MDI (MDI =
Manual Data Input), exécuter une séquence TOOL CALL en indiquant
l'axe d'outil, puis sélectionner à nouveau le mode de
fonctionnement Manuel (en mode de fonctionnement MDI, vous
pouvez exécuter n'importe quelle séquence CN pas à pas et
indépendamment les unes des autres)
U Sélectionner les fonctions de palpage : la TNC affiche
les fonctions disponibles dans la barre des softkeys.
U
Déterminer la rotation de base : la TNC affiche le
menu de la rotation de base. Pour déterminer la
rotation de base, palper deux points sur une droite de
la pièce
U
Avec les touches de sens des axes, prépositionner le
palpeur à proximité du premier point de palpage
U
Sélectionner par softkey le sens de palpage
U
Appuyer sur Start CN : le palpeur se déplace dans le
sens défini jusqu'à ce qu'il touche la pièce. Il revient
ensuite automatiquement à la position de départ
U
Avec les touches de sens des axes, prépositionner le
palpeur à proximité du deuxième point de palpage
U
Appuyer sur Start CN : le palpeur se déplace dans le
sens défini jusqu'à ce qu'il touche la pièce. Il revient
ensuite automatiquement à la position de départ
U
La rotation de base déterminée par la TNC est
finalement affichée.
U
Prendre en compte avec la softkey ROTATION DE
BASE la valeur affichée en tant que rotation active.
Softkey END pour quitter le menu
Informations détaillées sur ce thème
„ Mode de fonctionnement MDI : voir „Programmation et exécution
d'opérations simples d'usinage”, page 406
„ Dégauchir la pièce : voir „Compensation du désaxage de la pièce
avec un palpeur 3D”, page 392
54
Premier pas avec la TNC 320
1.6 Dégauchir la pièce
Initialisation du point d'origine avec palpeur 3D
U
Installer le palpeur 3D : en mode de fonctionnement MDI, exécuter
une séquence TOOL CALL en indiquant l'axe d'outil et ensuite, revenir
dans le mode de fonctionnement Manuel
U Sélectionner les fonctions de palpage : la TNC affiche
les fonctions disponibles dans la barre des softkeys.
U
Définir par exemple le point d'origine dans un coin de
la pièce
U
Positionner le système de palpage à proximité du
premier point de la première arête de la pièce
U
Sélectionner par softkey le sens de palpage
U
Appuyer sur Start CN : le palpeur se déplace dans le
sens défini jusqu'à ce qu'il touche la pièce. Il revient
ensuite automatiquement à la position de départ
U
Positionner avec les touches d'axes le système de
palpage à proximité du deuxième point de la première
arête de la pièce
U
Appuyer sur Start CN : le palpeur se déplace dans le
sens défini jusqu'à ce qu'il touche la pièce. Il revient
ensuite automatiquement à la position de départ
U
Positionner avec les touches d'axes le système de
palpage à proximité du premier point de la seconde
arête de la pièce
U
Sélectionner par softkey le sens de palpage
U
Appuyer sur Start CN : le palpeur se déplace dans le
sens défini jusqu'à ce qu'il touche la pièce. Il revient
ensuite automatiquement à la position de départ
U
Positionner avec les touches d'axes le système de
palpage à proximité du deuxième point de la seconde
arête de la pièce
U
Appuyer sur Start CN : le palpeur se déplace dans le
sens défini jusqu'à ce qu'il touche la pièce. Il revient
ensuite automatiquement à la position de départ
U
Pour terminer, la TNC affiche les coordonnées du coin
U
Initialiser à 0 : appuyer sur la softkey INITIAL. POINT
DE RÉFÉRENCE
U
Quitter le menu avec la softkeyEND
Informations détaillées sur ce thème
„ Initialiser les points d'origine : voir „Initialisation du point d'origine
avec palpeur 3D”, page 394
HEIDENHAIN TNC 320
55
1.7 Exécuter le premier programme
1.7 Exécuter le premier programme
Choisir le mode de fonctionnement adéquat
Vous pouvez exécuter les programmes soit en mode Exécution pas à
pas ou en mode Exécution en continu :
U
Appuyer sur la touche de mode de fonctionnement :
la TNC passe en mode Exécution de programme pas
à pas : elle exécute les programmes séquence par
séquence Vous devez valider les séquences une-àune en appuyant sur la touche Start CN
U
Appuyer sur la touche de mode de fonctionnement :
la TNC passe en mode Exécution de programme en
continu : lorsque le programme est lancé avec Start
CN, elle l'exécute jusqu'à une interruption du
programme ou jusqu'à la fin
Informations détaillées sur ce thème
„ Modes de fonctionnement de la TNC : voir „Modes de
fonctionnement”, page 62
„ Exécuter les programmes : voir „Exécution de programme”, page
426
Sélectionner le programme que vous souhaitez
exécuter
U
Appuyer sur la touche PGM MGT : la TNC ouvre le
gestionnaire de fichiers
U
Appuyer sur la softkey DERNIERS FICHIERS : la TNC
ouvre une fenêtre auxiliaire qui affiche les derniers
fichiers sélectionnés
U
Avec les touches fléchées, sélectionner en cas de
besoin le programme que vous voulez exécuter,
valider avec la touche ENT
Informations détaillées sur ce thème
„ Gestion des fichiers : voir „Travailler avec le gestionnaire de
fichiers”, page 97
Lancer le programme
U
Appuyer sur la touche Start CN : la TNC exécute le
programme en cours
Informations détaillées sur ce thème
„ Exécuter les programmes : voir „Exécution de programme”, page
426
56
Premier pas avec la TNC 320
Introduction
2.1 La TNC 320
2.1 La TNC 320
Les TNC’s HEIDENHAIN sont des commandes de contournage
adaptées à l'atelier. Les opérations de fraisage et de perçage
classiques sont directement programmées au pied de la machine,
dans un langage conversationnel facilement compréhensible. Elles
sont destinées à l’équipement de fraiseuses, perceuses et centres
d'usinage jusqu’à 5 axes. La position angulaire de la broche peut
également être programmée.
La conception claire du pupitre de commande et de l'écran assurent
un accès rapide et simple à toutes les fonctions.
Programmation : conversationnel Texte clair
HEIDENHAIN et DIN/ISO
Pour l'utilisateur, le conversationnel Texte clair HEIDENHAIN simplifie
la création des programmes. La représentation graphique des diverses
séquences assiste l'opérateur lors de la programmation. La
programmation de contours libres FK constitue une aide
supplémentaire lorsque la cotation des plans n'est pas orientée CN. La
simulation graphique de l'usinage de la pièce est possible aussi bien
pendant le test du programme que pendant son exécution.
Les TNC sont également programmables en DIN/ISO ou en mode
DNC.
En plus, un programme peut être introduit et testé pendant l'exécution
du programme d'usinage d'une autre pièce.
Compatibilité
Les performances de la TNC 320 sont différentes de celles de la série
des commandes TNC 4xx et iTNC 530. Ainsi les programmes élaborés
(à partir de la TNC 150 B) ne sont compatibles que sous certaines
conditions avec la TNC 320. Quand une séquence CN comporte des
éléments non valides, une séquence d'ERREUR est créée par la TNC
lors de l'ouverture du fichier.
A ce sujet, consultez la description détaillée des
différences entre la iTNC 530 et la TNC 320 (voir
„Comparatif des fonctions de la TNC 320 et de la
iTNC 530” à la page 481).
58
Introduction
Ecran
La TNC est livrée avec un écran plat couleur TFT 15 pouces.
1
En-tête
2
Quand la TNC est sous tension, l'écran affiche dans la fenêtre du
haut les modes de fonctionnement sélectionnés : modes
Machine à gauche et modes Programmation à droite. Le mode en
cours apparaît dans le plus grand champ de la fenêtre du haut de
l'écran : les questions de dialogue et les textes de messages s'y
affichent (excepté lorsque l'écran n'affiche que le graphique).
Softkeys
3
4
5
6
7
8
9
En bas de l'écran, la TNC affiche d'autres fonctions dans une
barre de softkeys. Ces fonctions sont accessibles avec les
touches situées sous les softkeys. Les touches noires
extérieures fléchées permettent de commuter les barres de
softkeys dont le nombre est matérialisé par des traits étroits
situés juste au dessus des barres de softkey. La barre de softkeys
active est signalée par un trait plus clair.
Touches de sélection des softkeys
Commuter les barres de softkeys
Définition du partage de l'écran
Touche de commutation de l'écran entre les modes Machine et
Programmation
Touches de sélection des softkeys destinées au constructeur de
la machine
Commuter les barres de softkeys destinées au constructeur de la
machine
Raccordement USB
HEIDENHAIN TNC 320
8
1
91
5
7
2
6
1
31
4
4
59
2.2 Ecran et pupitre de commande
2.2 Ecran et pupitre de commande
2.2 Ecran et pupitre de commande
Définir le partage de l'écran
L'utilisateur sélectionne le partage de l'écran : ainsi, par exemple, la
TNC peut afficher le programme en mode Mémorisation/Edition de
programme dans la fenêtre de gauche et simultanément le graphique
de programmation dans la fenêtre de droite. L'articulation des
programmes peut également être affichée dans la fenêtre de droite ou
encore le programme seul peut être affiché dans la fenêtre entière.
Les fenêtres affichées dans l'écran dépendent du mode de
fonctionnement choisi.
Définir le partage de l'écran :
Appuyer sur la touche de commutation de l'écran : la
barre des softkeys indique les partages possibles de
l'écran, voir „Modes de fonctionnement”, page 62
Choisir le partage de l'écran avec la softkey
60
Introduction
2.2 Ecran et pupitre de commande
Pupitre de commande
La TNC 320 est livrée avec un pupitre de commande intégré. La figure
en haut à droite montre les éléments de commande du pupitre :
1
2
3
4
5
6
7
„ Gestionnaire de fichiers
„ Calculatrice
„ Fonction MOD
„ Fonction HELP
Modes Programmation
Modes Machine
Ouverture des dialogues de programmation
Touches fléchées et instruction de saut GOTO
Pavé numérique et sélection des axes
Touches de navigation
Les fonctions des différentes touches sont résumées au verso de la
première page.
Les touches externes – touche MARCHE CN ou ARRET
CN, par exemple – sont décrites dans le manuel de votre
machine.
1
4
1
6
3
2
1
7
HEIDENHAIN TNC 320
5
61
2.3 Modes de fonctionnement
2.3 Modes de fonctionnement
Mode Manuel et Manivelle électronique
Le réglage des machines s'effectue en mode Manuel. Ce mode
permet de positionner les axes de la machine manuellement ou pas à
pas, d'initialiser les points d'origine et d'incliner le plan d'usinage.
Le mode Manivelle électronique sert au déplacement manuel des
axes de la machine à l'aide d'une manivelle électronique HR.
Softkeys de partage d'écran (voir description précédente)
Fenêtre
Softkey
Positions
à gauche : positions, à droite : affichage d'état
Positionnement avec introduction manuelle
Ce mode sert à programmer des déplacements simples, p. ex. pour
un surfaçage ou un pré-positionnement.
Softkeys de partage d'écran
Fenêtre
Softkey
Programme
à gauche : programme, à droite : affichage d'état
62
Introduction
2.3 Modes de fonctionnement
Mémorisation/Edition de programme
Vous créez vos programmes d'usinage dans ce mode de
fonctionnement. Une aide à la programmation, variée et complète, est
garantie grâce à la programmation de contours libres FK, aux
différents cycles et aux fonctions des paramètres Q. Au choix, le
graphique affiche le contour programmé.
Softkeys de partage d'écran
Fenêtre
Softkey
Programme
à gauche : Programme, à droite : Articulation de
programme
à gauche : Programme, à droite : Graphique de
programmation
Test de programme
La TNC simule les programmes et parties de programme en mode
Test, par exemple pour détecter les incohérences géométriques, les
données manquantes ou erronées ainsi que les problèmes liés à la
zone de travail. La simulation est assistée graphiquement dans
plusieurs vues.
Softkeys de partage d'écran : voir „Exécution de programme en
continu et Exécution de programme pas à pas”, page 64.
HEIDENHAIN TNC 320
63
2.3 Modes de fonctionnement
Exécution de programme en continu et
Exécution de programme pas à pas
En mode Exécution de programme en continu, la TNC exécute un
programme jusqu’à la fin ou jusqu’à une interruption manuelle ou
programmée. Après une interruption, vous pouvez relancer
l'exécution du programme.
En mode Exécution de programme pas à pas, la touche START
externe permet l'exécution individuelle de chaque séquence.
Softkeys de partage d'écran
Fenêtre
Softkey
Programme
à gauche : Programme, à droite : Articulation de
programme
à gauche : Programme, à droite : Affichage d'état
à gauche : Programme, à droite : Graphique
Graphique
64
Introduction
2.4 Affichages d'état
2.4 Affichages d'état
Affichage d'état „général“
L'affichage d'état général dans la partie basse de l'écran fournit l'état
actuel de la machine. Il apparaît automatiquement dans les modes
„ Exécution pas à pas et Exécution en continu si le mode graphique
n'a pas été choisi exclusivement ainsi que dans le mode
„ Positionnement avec introduction manuelle.
Dans les modes Manuel et Manivelle électronique, l'affichage d'état
apparaît dans la grande fenêtre.
HEIDENHAIN TNC 320
65
2.4 Affichages d'état
Informations de l'affichage d'état
Symbole
Signification
EFF
Coordonnées effectives ou nominales de la position
actuelle
XYZ
Axes machine ; la TNC affiche les axes auxiliaires en
caractères minuscules. L'ordre et le nombre d'axes
affichés sont définis par le constructeur de votre
machine. Consultez le manuel de votre machine
FSM
L'affichage de l'avance en pouces correspond au
dixième de la valeur active. Vitesse de rotation S,
avance F, fonction auxiliaire active M
Le programme est en cours d'exécution
L'axe est bloqué
L'axe peut être déplacé avec la manivelle
Les déplacements des axes seront affectés par une
rotation de base
Les déplacements des axes se feront dans un plan
d'usinage incliné
Aucun programme n'est actif
Programme lancé
Programme arrêté
Programme est interrompu
66
Introduction
2.4 Affichages d'état
Affichage d'état supplémentaire
L'affichage d'état supplémentaire donne des informations détaillées
sur le déroulement du programme. Il peut être appelé dans tous les
modes de fonctionnement, excepté en mode Mémorisation/édition de
programme.
Activer l'affichage d'état supplémentaire
Appeler la barre des softkeys de partage d'écran
Sélectionner le partage d'écran avec l'affichage d'état
supplémentaire : sur la moitié droite de l'écran, la TNC
affiche le formulaire d’état Sommaire
Sélectionner l'affichage d'état supplémentaire
Commuter la barre de softkeys jusqu'à l'apparition de
la softkey INFOS
Sélectionner l’affichage d’état supplémentaire
directement par softkey, par exemple des positions
et coordonnées ou bien
Sélectionner l'affichage souhaité à l'aide des softkeys
de commutation
Les affichages d'état disponibles décrits ci-après sont à sélectionner
directement par softkeys ou par les softkeys de commutation.
Il faut remarquer que les informations concernant
l'affichage d'état décrites ci-après ne sont disponibles que
si l'option de logiciel correspondante a été validée sur
votre TNC.
HEIDENHAIN TNC 320
67
2.4 Affichages d'état
Sommaire
La TNC affiche le formulaire d'état Sommaire après la mise sous
tension si vous avez sélectionné le partage d'écran
PROGRAMME+INFOS (ou POSITION + INFOS). Le formulaire
Sommaire récapitule les principales informations d’état également
disponibles dans les formulaires détaillés.
Softkey
Signification
Affichage de position
Informations de l'outil
Fonctions M actives
Transformations de coordonnées actives
Sous-programme actif
Répétition de parties de programme active
Programme appelé avec PGM CALL
Durée d'usinage actuelle
Nom du programme principal courant
Informations générales du programme (onglet PGM)
Softkey
Signification
Sélection
directe
impossible
Nom du programme principal courant
Centre de cercle CC (pôle)
Chronomètre de temporisation
Durée d'usinage quand le programme a été
intégralement simulé en mode Test de programme
Durée d'usinage actuelle en %
Heure actuelle
Programmes appelés
68
Introduction
2.4 Affichages d'état
Répétition de partie de programme/Sous-programmes
(onglet LBL)
Softkey
Signification
Sélection
directe
impossible
Répétitions de partie de programme actives avec
numéro de séquence, numéro de label et nombre
de répétitions programmées/restant à exécuter
Numéros de sous-programmes actifs avec le
numéro de la séquence d'appel et le numéro de
label appelé
Informations relatives aux cycles standard (onglet CYC)
Softkey
Signification
Sélection
directe
impossible
Cycle d'usinage actif
Valeurs actives du cycle 32 Tolérance
HEIDENHAIN TNC 320
69
2.4 Affichages d'état
Fonctions auxiliaires M actives (onglet M)
Softkey
Signification
Sélection
directe
impossible
Liste des fonctions M actives normalisées
Liste des fonctions M actives personnalisées au
constructeur de votre machine
70
Introduction
2.4 Affichages d'état
Positions et coordonnées (onglet POS)
Softkey
Signification
Type d'affichage de positions, p.ex. position effective
Angle pour le plan d'usinage incliné
Angle de la rotation de base
Informations sur les outils (onglet TOOL)
Softkey
Signification
„ Affichage T : Numéro et nom de l'outil
„ Affichage RT : Numéro et nom d'un outil jumeau
Axe d'outil
Longueur et rayon d'outils
Surépaisseurs (valeurs Delta) issues du tableau
d'outils (TAB) et du TOOL CALL (PGM)
Durée d'utilisation, durée d'utilisation max. (TIME 1) et
durée d'utilisation max. avec TOOL CALL (TIME 2)
Affichage de l'outil actif et de l'outil jumeau (suivant)
HEIDENHAIN TNC 320
71
2.4 Affichages d'état
Etalonnage d'outils (onglet TT)
La TNC n'affiche l'onglet TT que si cette fonction est
active sur votre machine.
Softkey
Signification
Sélection
directe
impossible
Numéro de l'outil à étalonner
Affichage indiquant si le rayon ou la longueur
d'outil doit être étalonné
Valeurs MIN et MAX d'étalonnage des différents
tranchants et résultat de la mesure avec l'outil en
rotation (DYN).
Numéro du tranchant de l'outil avec sa valeur de
mesure. L'étoile située derrière la valeur de
mesure indique que la tolérance du tableau
d'outils a été dépassée
Conversion de coordonnées (onglet TRANS)
Softkey
Signification
Nom du tableau de points zéro actif
Numéro du point zéro actif (#), commentaire de la
ligne active du numéro de point zéro actif (DOC) du
cycle 7
Décalage actif du point zéro (cycle 7); la TNC
affiche un décalage actif du point zéro sur 8 axes
max.
Axes réfléchis (cycle 8)
Rotation de base active
Angle de rotation actif (cycle 10)
Facteur échelle actif / facteurs échelles (cycles 11
/ 26); la TNC affiche un facteur d'échelle actif sur
6 axes max.
Centre de l'homothétie
voir Manuel d'utilisation des cycles, cycles de conversion de
coordonnées.
72
Introduction
2.4 Affichages d'état
Afficher les paramètres Q (onglet QPARA)
Softkey
Signification
Affichage des valeurs courantes du paramètre Q
défini
Affichage des valeurs courantes du paramètre Q
défini
Sélectionnez la softkey LISTE DE PARAM. Q La TNC
ouvre une fenêtre auxiliaire dans laquelle vous pouvez
introduire la plage souhaitée de l’affichage des paramètres
Q ou paramètres string Plusieurs paramètres Q peuvent
être introduits, séparés par une virgule (p. ex. Q 1,2,3,4).
Le domaine d'affichage est défini avec un trait d'union (p.
ex. Q 10-14)
HEIDENHAIN TNC 320
73
2.5 Accessoires : Palpeurs 3D et manivelles électroniques HEIDENHAIN
2.5 Accessoires : Palpeurs 3D et
manivelles électroniques
HEIDENHAIN
Palpeurs 3D
Les différents palpeurs 3D HEIDENHAIN servent à :
„ dégauchir automatiquement les pièces
„ initialiser les points d'origine avec rapidité et précision
„ mesurer la pièce pendant l'exécution du programme
„ étalonner et contrôler les outils
Toutes les fonctions des systèmes de palpage sont
expliquées dans le manuel d'utilisation des cycles. En cas
de besoin, adressez-vous à HEIDENHAIN pour recevoir ce
manuel d'utilisation. ID : 679 220-xx
Les palpeurs à commutation TS 220, TS 440, TS 444, TS 640 et
TS 740
Ces palpeurs sont particulièrement bien adaptés au dégauchissage
automatique de la pièce, à l'initialisation du point d'origine et aux
mesures de la pièce. Le TS 220 transmet les signaux de commutation
via un câble et représente donc une alternative intéressante si vous
digitalisez occasionnellement.
Le palpeur TS 640 (voir figure) et le TS 440, plus petit, ont été conçus
spécialement pour les machines équipées d'un changeur d'outils. Les
signaux de commutation sont transmis sans câble, par voie infrarouge.
Principe de fonctionnement : au sein des palpeurs à commutation
HEIDENHAIN, un commutateur optique sans usure détecte la
déviation de la tige. Le signal créé permet de mémoriser la valeur
effective de la position courante du palpeur.
74
Introduction
2.5 Accessoires : Palpeurs 3D et manivelles électroniques HEIDENHAIN
Palpeur d'outils TT 140 pour l'étalonnage d'outils
Le TT140 est un palpeur 3D à commutation destiné à l'étalonnage et
au contrôle des outils. La TNC dispose de 3 cycles pour déterminer le
rayon et la longueur d'outil avec broche à l'arrêt ou en rotation. La
structure particulièrement robuste et l'indice de protection élevé
rendent le TT 140 insensible aux liquides de refroidissement et aux
copeaux. Le signal de commutation est généré grâce à un
commutateur optique sans usure d'une très grande fiabilité.
Manivelles électroniques HR
Les manivelles électroniques permettent un déplacement manuel
simple et précis des axes des machines. Le déplacement par tour de
manivelle peut être réglé dans une plage très large. En plus des
manivelles encastrables HR130 et HR 150, HEIDENHAIN propose la
manivelle portable HR 410.
HEIDENHAIN TNC 320
75
76
Introduction
2.5 Accessoires : Palpeurs 3D et manivelles électroniques HEIDENHAIN
Programmation :
principes de base,
gestionnaire de fichiers
3.1 Principes de base
3.1 Principes de base
Systèmes de mesure de déplacement et
marques de référence
Z
Des systèmes de mesure montés sur les axes de la machine
mesurent les positions de la table ou de l'outil. Les axes linéaires sont
généralement équipés de systèmes de mesure linéaire et les plateaux
circulaires et axes inclinés, de systèmes de mesure angulaire.
Y
X
Lorsqu'un axe de la machine se déplace, le système de mesure
correspondant génère un signal électrique qui permet à la TNC de
calculer la position effective exacte de cet axe.
Une coupure d'alimentation provoque la perte de la relation entre la
position de la table de la machine et la position effective calculée. Pour
rétablir cette relation, les systèmes de mesure incrémentaux
possèdent des marques de référence. Lors du passage sur une
marque de référence, la TNC reçoit un signal identifiant un point
d'origine fixe. Celui-ci permet à la TNC de rétablir la relation entre la
position effective et la position actuelle de la machine. Sur les
systèmes de mesure linéaire équipés de marques de référence à
distances codées, il suffit de déplacer les axes de la machine de 20
mm au maximum et, sur les systèmes de mesure angulaire, de 20°.
Avec les systèmes de mesure absolus, une valeur absolue de position
est transmise à la commande lors de la mise sous tension. Ceci
permet de rétablir la relation entre la position effective et la position de
la table immédiatement après la mise sous tension sans déplacement
des axes de la machine.
XMP
X (Z,Y)
Système de référence
Un système de référence permet de définir sans ambiguïté les
positions dans un plan ou dans l’espace. Les données d'une position
se réfèrent toujours à un point fixe et sont définies par leurs
coordonnées.
Dans le système rectangulaire (système cartésien), les axes X, Y et Z
définissent les trois directions. Les axes sont perpendiculaires entre
eux et se coupent en un point : le point zéro. Une coordonnée indique
la distance par rapport au point zéro, dans l’une de ces directions. Une
position est ainsi définie dans le plan avec deux coordonnées et dans
l’espace, avec trois coordonnées.
Les coordonnées qui se réfèrent au point zéro sont appelées
coordonnées absolues. Les coordonnées relatives se réfèrent à une
autre position quelconque (point d'origine) dans le système de
coordonnées. Les valeurs des coordonnées relatives sont aussi
appelées valeurs de coordonnées incrémentales.
Z
Y
X
78
Programmation : principes de base, gestionnaire de fichiers
3.1 Principes de base
Système de référence sur fraiseuses
Pour l’usinage d’une pièce sur une fraiseuse, le système de référence
est généralement le système de coordonnées cartésiennes. La figure
de droite montre le parallèle entre le système de coordonnées
cartésiennes et les axes de la machine. La règle des trois doigts de la
main droite est un moyen mnémotechnique : le majeur dirigé dans le
sens de l’axe d’outil indique alors le sens Z+, le pouce indique le sens
X+, et l’index le sens Y+.
+Z
+Y
La TNC 320 peut piloter jusqu'à 5 axes. En plus des axes principaux X,
Y et Z, existent également les axes auxiliaires U, V et W qui leur sont
parallèles. Les axes rotatifs sont les axes A, B et C. La figure en bas à
droite montre la relation des axes auxiliaires et axes rotatifs avec les
axes principaux.
+X
+Z
+X
+Y
Désignation des axes des fraiseuses
Les axes X, Y et Z de votre fraiseuse sont appelés axe principal (1er
axe) et axe secondaire (2ème axe) et axe d'outil. La désignation de
l'axe d'outil est déterminante pour l'affectation de l'axe principal et de
l'axe secondaire.
Axe d'outil
Axe principal
Axe secondaire
X
Y
Z
Y
Z
X
Z
X
Y
Z
Y
W+
C+
B+
V+
X
A+
U+
HEIDENHAIN TNC 320
79
3.1 Principes de base
Coordonnées polaires
Quand le plan d’usinage est coté en coordonnées cartésiennes, vous
élaborez votre programme d’usinage également en coordonnées
cartésiennes. Dans le cas d'arcs de cercle ou de données angulaires,
il est souvent plus simple de définir les positions en coordonnées
polaires.
Contrairement aux coordonnées cartésiennes X, Y et Z, les
coordonnées polaires ne définissent les positions que dans un plan.
Les coordonnées polaires ont leur point zéro sur le pôle CC (CC = de
l'anglais circle center: centre de cercle). Une position dans un plan est
définie clairement avec les données suivantes :
Y
PR
PA2
PA3
PR
PR
10
PA1
CC
„ Rayon des coordonnées polaires : distance entre le pôle CC et la
position
„ Angle des coordonnées polaires : angle formé par l’axe de référence
angulaire et la droite reliant le pôle CC à la position
0°
X
30
Définition du pôle et de l'axe de référence angulaire
Le pôle est défini par deux coordonnées en coordonnées cartésiennes
dans l'un des trois plans L’axe de référence angulaire pour l’angle
polaire PA est ainsi clairement défini.
Coordonnées polaires (plan)
Axe de référence angulaire
X/Y
+X
Y/Z
+Y
Z/X
+Z
Y
Z
Z
X
Z
Y
Y
X
X
80
Programmation : principes de base, gestionnaire de fichiers
3.1 Principes de base
Positions absolues et positions incrémentales
sur une pièce
Positions absolues sur une pièce
Quand les coordonnées d’une position se réfèrent au point zéro
(origine), celles-ci sont appelées coordonnées absolues. Chaque
position sur une pièce est définie clairement par ses coordonnées
absolues.
Trou 2
X = 30 mm
Y = 20 mm
3
30
Exemple 1 : trous en coordonnées absolues :
Trou 1
X = 10 mm
Y = 10 mm
Y
Trou 3
X = 50 mm
Y = 30 mm
2
20
1
10
Positions incrémentales sur la pièce
Les coordonnées incrémentales se réfèrent à la dernière position
programmée servant de point zéro (fictif) relatif. Lors de l’élaboration
du programme, les coordonnées incrémentales indiquent ainsi le
déplacement à effectuer entre la dernière position nominale et la
suivante. Cette cotation est également appelée cotation en chaîne.
10
Une cote incrémentale est signalée par un „I“ devant l’axe.
30
Y
Exemple 2 : trous en coordonnées incrémentales
Coordonnées absolues du trou 4
6
5
10
X = 10 mm
Y = 10 mm
4
10
Trou 6se référant à 5
X = 20 mm
Y = 10 mm
10
Trou 5 se référant à 4
X = 20 mm
Y = 10 mm
X
50
Coordonnées polaires absolues et incrémentales
Les coordonnées absolues se réfèrent toujours au pôle et à l'axe de
référence angulaire.
10
X
20
20
Les coordonnées incrémentales se réfèrent toujours à la dernière
position d’outil programmée.
Y
+IPR
PR
PR
10
PA
CC
30
HEIDENHAIN TNC 320
PR
+IPA +IPA
0°
X
81
Le plan de la pièce indique un point caractéristique comme point
d'origine absolue (point zéro), en général un coin de la pièce. Pour
initialiser le point d'origine, vous alignez tout d’abord la pièce sur les
axes de la machine, puis sur chaque axe, vous amenez l’outil à une
position donnée par rapport à la pièce. Dans cette position, initialisez
l’affichage de la TNC soit à zéro, soit à une valeur de position connue.
Ainsi est créée la relation de la position de la pièce avec le système de
référence. Celle-ci est valable pour l'affichage de la TNC et le
programme d'usinage.
Z
MAX
Y
X
Quand sur un plan, il y a des points d'origine relatifs, utilisez
simplement les cycles de conversion de coordonnées (voir le manuel
d'utilisation des cycles, conversion de coordonnées).
Quand la cotation du plan de la pièce n’est pas orientée CN, choisissez
comme point d'origine une position ou un coin qui servira à déterminer
le plus facilement possible les autres positions de la pièce.
MIN
L'initialisation des points d'origine à l'aide d'un palpeur 3D
HEIDENHAIN est particulièrement aisée. Voir Manuel d'utilisation des
cycles palpeurs „Initialisation du point d'origine avec les palpeurs 3D“.
Y
7
750
6
5
320
150
0
3
4
-150
0
Exemple
La figure de la pièce montre des trous (1 à 4) dont les cotes se réfèrent
à un point d'origine absolu ayant les coordonnées X=0 Y=0. Les trous
(5 à 7) se réfèrent à un point d'origine relatif de coordonnées absolues
X=450 Y=750. A l'aide du cycle DECALAGE DU POINT ZERO, vous pouvez
décaler provisoirement le point zéro à la position X=450, Y=750 pour
pouvoir programmer les trous (5 à 7) sans avoir à faire d'autres calculs.
300±0,1
3.1 Principes de base
Sélection du point d'origine
1
325 450
2
900
X
950
82
Programmation : principes de base, gestionnaire de fichiers
3.2 Ouverture et introduction de programmes
3.2 Ouverture et introduction de
programmes
Structure d'un programme CN en dialogue
conversationnel HEIDENHAIN
Un programme d’usinage est constitué d’une suite de séquences de
programme. La figure de droite indique les éléments d’une séquence.
La TNC numérote les séquences d’un programme d’usinage par ordre
croissant.
La première séquence d'un programme contient BEGIN PGM, le nom du
programme et l'unité de mesure utilisée.
Séquence
10 L X+10 Y+5 R0 F100 M3
Les séquences suivantes contiennent les informations concernant :
„ la pièce brute
„ les appels d'outils
„ l'approche à une position de sécurité
„ les avances et vitesses de rotation
„ les déplacements de contournage, cycles et autres fonctions
Fonction de
contournage
Numéro de
séquence
Mots
La dernière séquence d'un programme contient END PGM, le nom du
programme et l'unité de mesure utilisée.
HEIDENHAIN recommande, après l'appel d'outil, d'aller
systématiquement à une position de sécurité pour
assurer un début d'usinage sans collision!
Définition de la pièce brute: BLK FORM
Immédiatement après avoir ouvert un nouveau programme, vous
définissez un parallélépipède rectangle brut. Pour la définition
ultérieure de la pièce brute, appuyez sur la touche SPEC FCT, la
Softkey DONNEES PROGRAMME puis sur la softkey BLK FORM.
Cette définition est indispensable à la TNC pour effectuer les
simulations graphiques. Les cotés du parallélépipède ne doivent pas
dépasser 100 000 mm et sont parallèles aux axes X, Y et Z.. Cette
pièce brute est définie par deux de ses coins :
„ Point MIN : la plus petite coordonnée X,Y et Z du parallélépipède; à
programmer en valeurs absolues
„ Point MAX : la plus grande coordonnée X, Y et Z du parallélépipède;
à programmer en valeurs absolues ou incrémentales
La définition de la pièce brute n'est indispensable que si
un test graphique du programme est souhaité!
HEIDENHAIN TNC 320
83
3.2 Ouverture et introduction de programmes
Ouvrir un nouveau programme d'usinage
Vous introduisez toujours un programme d'usinage en mode de
fonctionnement Mémorisation/Edition de programme. Exemple
d'ouverture de programme :
Sélectionner le mode Mémorisation/Edition de
programme
Appeler le gestionnaire de fichiers : appuyer sur la
touche PGM MGT
Sélectionnez le répertoire dans lequel vous souhaitez mémoriser le
nouveau programme :
NOM DE FICHIER = ALT.H
Introduire le nom du nouveau programme, valider
avec la touche ENT
Sélectionner l'unité de mesure: Appuyer sur MM ou
INCH. La TNC change de fenêtre et ouvre le dialogue
de définition de la BLK-FORM (pièce brute)
PLAN D'USINAGE DANS LE GRAPHIQUE :
Introduire l'axe de broche, par exemple Z
DÉFINITION DE LA PIÈCE BRUTE :
Introduire l'une après l'autre les coordonnées en X, Y
et Z du point MIN et valider à chaque fois avec la
touche ENT
DÉFINITION DE LA PIÈCE BRUTE : MAXIMUM
Introduire l'une après l'autre les coordonnées en X, Y
et Z du point MAX et valider à chaque fois avec la
touche ENT
84
Programmation : principes de base, gestionnaire de fichiers
3.2 Ouverture et introduction de programmes
Exemple : affichage de BLK-Form dans le programme CN
0 BEGIN PGM NOUV MM
Début du programme, nom, unité de mesure
1 BLK FORM 0.1 Z X+0 Y+0 Z-40
Axe de broche, coordonnées du point MIN
2 BLK FORM 0.2 X+100 Y+100 Z+0
Coordonnées du point MAX
3 END PGM NOUV MM
Fin du programme, nom, unité de mesure
La TNC génère de manière automatique la numérotation des
séquences ainsi que les séquences BEGIN et END.
Si la définition d'une pièce brute n'est pas souhaitée,
interrompez le dialogue Plan d'usinage dans le
graph. : XY avec la touche DEL!
La TNC ne peut représenter le graphique que si le côté le
plus petit mesure au moins 50 µm et le plus grand au plus
99 999,999 mm.
HEIDENHAIN TNC 320
85
3.2 Ouverture et introduction de programmes
Programmation de déplacements d'outils en
dialogue conversationnel Texte clair
Pour programmer une séquence, commencez avec une touche de
dialogue. En haut de l'écran, la TNC demande toutes les données
nécessaires.
Exemple de séquence de positionnement
Ouvrir la séquence
COORDONNÉES?
10
20
Introduire la coordonnée X du point d'arrivée
Introduire la coordonnée Y du point d'arrivée; puis
question suivante avec la touche ENT
CORR. RAYON: RL/RR/SANS CORR.: ?
Introduire „sans correction de rayon“, puis question
suivante avec la touche ENT
AVANCE F=? / F MAX = ENT
100
Avance de contournage 100 mm/min, puis question
suivante avec la touche ENT
FONCTION AUXILIAIRE M?
Fonction auxiliaire M3 „Marche broche“, la TNC
termine le dialogue avec la touche ENT
3
La fenêtre de programme affiche la ligne :
3 L X+10 Y+5 R0 F100 M3
86
Programmation : principes de base, gestionnaire de fichiers
3.2 Ouverture et introduction de programmes
Possibilités d'introduction de l'avance
Fonctions pour la définition de l'avance
Softkey
Déplacement en avance rapide, effet non modal.
Exception : quand le rapide est défini avant la
séquence APPR, FMAX est également actif pour
aborder le point auxiliaire (voir „Positions
importantes en approche et en sortie” à la page
166)
Déplacement avec avance calculée
automatiquement dans la séquence TOOL CALL
Déplacement avec l'avance programmée (unité
mm/min. ou 1/10ème pouce/min.). Avec les axes
rotatifs, la TNC interprète l'avance en
degrés/min. indépendamment du fait que le
programme soit écrit en mm ou en pouces
Définir l'avance par tour (en mm/tour ou
pouces/tour). Attention : programmes FU en
pouces non combinables avec M136
Définir l'avance par dent (en mm/dent ou
pouces/dent). Le nombre de dents doit être
défini dans le tableau d'outils (colonne CUT.)
Fonctions lors du conversationnel
Touche
Sauter la question
Fermer prématurément le dialogue
Interrompre le dialogue et effacer
HEIDENHAIN TNC 320
87
3.2 Ouverture et introduction de programmes
Validation des positions effectives (transfert des
points courants)
La TNC permet de valider dans le programme la position effective de
l'outil, par exemple lorsque vous
„ programmez des séquences de déplacement
„ programmer des cycles
Pour transférer correctement les valeurs de position, procédez de la
façon suivante :
U
Dans une séquence, se positionner sur le champ de saisie dans
lequel vous souhaitez transférer une position
U Sélectionner la fonction validation de position
effective : dans la barre de softkeys, la TNC affiche les
axes dont vous pouvez transférer les positions
U
Sélectionner l'axe : la TNC transfère la position
actuelle de l'axe sélectionné dans le champ actif
La TNC transfère toujours dans le plan d'usinage les
coordonnées du centre de l'outil – même si la correction
du rayon d'outil est active.
La TNC transfère toujours dans l'axe d'outil la coordonnée
de la pointe de l'outil. Elle tient donc toujours compte de la
correction de longueur d'outil active.
La barre de softkeys de la TNC reste active jusqu'à ce que
vous appuyez à nouveau sur la touche „Validation de la
position effective“. Ce comportement est le même quand
vous mémorisez la séquence en cours et que vous ouvrez
une nouvelle séquence avec une touche de contournage.
Cette softkey disparait également quand dans une
séquence, vous choisissez un champ de saisie à modifier
avec des données alternatives (p.ex. la correction de rayon
d'outil).
La fonction „Valider la position effective“ est interdite
quand la fonction Inclinaison du plan d'usinage est active.
88
Programmation : principes de base, gestionnaire de fichiers
3.2 Ouverture et introduction de programmes
Editer un programme
Vous ne pouvez éditer un programme que s'il n'est pas en
cours d'exécution dans un des modes Machine de la TNC.
Pendant la création ou la modification d'un programme d'usinage,
vous pouvez sélectionner chaque ligne du programme et chaque mot
d'une séquence individuellement l'aide des touches fléchées ou des
softkeys :
Fonction
Softkey/touches
Feuilleter vers le haut
Feuilleter vers le bas
Saut au début du programme
Saut à la fin du programme
Modification dans l'écran de la position de la
séquence actuelle. Ceci vous permet
d'afficher davantage de séquences
programmées avant la séquence actuelle
Modification dans l'écran de la position de la
séquence actuelle. Ceci vous permet
d'afficher davantage de séquences
programmées après la séquence actuelle
Sauter d’une séquence à une autre
Sélectionner des mots dans la séquence
Sélectionner une séquence particulière :
appuyer sur la touche GOTO, introduire le
numéro de la séquence souhaité, valider avec
la touche ENT. Ou : introduire l'incrément de
numérotation des séquences et sauter vers le
haut ou vers le bas du nombre de lignes
introduit en appuyant sur la softkey N LIGNES
HEIDENHAIN TNC 320
89
3.2 Ouverture et introduction de programmes
Fonction
Softkey/touche
Mettre à zéro la valeur d’un mot sélectionné
Effacer une valeur erronée
Effacer un message erreur (non clignotant)
Effacer le mot sélectionné
Effacer la séquence sélectionnée
Effacer des cycles et des parties de
programme
Insérer la dernière séquence éditée ou
effacée
Insérer des séquences à un endroit quelconque
U Sélectionnez la séquence derrière laquelle vous souhaitez insérer
une nouvelle séquence et ouvrez le dialogue
Modifier et insérer des mots
U Dans une séquence, sélectionnez un mot et remplacez-le par la
nouvelle valeur. Le dialogue conversationnel Texte clair apparaît
lorsque le mot a été sélectionné.
U Valider la modification : appuyer sur la touche END
Si vous souhaitez insérer un mot, appuyez sur les touches fléchées
(vers la droite ou vers la gauche) jusqu’à ce que le dialogue concerné
apparaisse ; puis introduisez la valeur souhaitée.
90
Programmation : principes de base, gestionnaire de fichiers
3.2 Ouverture et introduction de programmes
Recherche de mots identiques dans diverses séquences
Pour cette fonction, mettre la softkey DESSIN AUTO sur OFF.
Choisir un mot dans une séquence : appuyer sur les
touches fléchées jusqu’à ce que le mot souhaité soit
marqué
Sélectionner la séquence à l'aide des touches
fléchées
Dans la nouvelle séquence sélectionnée, le marquage se trouve sur le
même mot que celui de la séquence choisie en premier.
Si vous avez lancé la recherche dans de très longs
programmes, la TNC affiche une fenêtre avec un curseur
de défilement. Vous pouvez également interrompre la
recherche en appuyant sur la softkey.
Trouver n'importe quel texte
U Sélectionner la fonction de recherche : appuyer sur la softkey
RECHERCHE. La TNC affiche le dialogue Cherche texte :
U Introduire le texte à rechercher
U Rechercher le texte : appuyer sur la softkey EXECUTER
HEIDENHAIN TNC 320
91
3.2 Ouverture et introduction de programmes
Marquer, copier, effacer et insérer des parties de programme
Pour copier des parties de programme dans un même programme CN
ou dans un autre programme CN, la TNC propose les fonctions
suivantes : voir tableau ci-dessous.
Pour copier des parties de programme, procédez ainsi :
U
U
U
U
U
U
Sélectionnez la barre de softkeys avec les fonctions de marquage
Sélectionnez la première (dernière) séquence de la partie de
programme que vous souhaitez copier
Marquer la première (dernière) séquence : appuyer sur la softkey
SELECT. BLOC. La TNC met la première position du numéro de
séquence en surbrillance et affiche la softkey QUITTER SELECTION
Déplacez la surbrillance sur la dernière (première) séquence de la
partie de programme que vous souhaitez copier ou effacer. La TNC
représente sous une autre couleur toutes les séquences marquées.
Vous pouvez fermer à tout moment la fonction de marquage en
appuyant sur la softkey QUITTER SELECTION
Copier une partie de programme marquée : appuyer sur la softkey
COPIER BLOC, effacer une partie de programme marquée : appuyer
sur la softkey EFFACER BLOC. La TNC mémorise le bloc marqué
Avec les touches fléchées, sélectionnez la séquence derrière
laquelle vous voulez insérer la partie de programme copiée (effacée)
Pour insérer la partie de programme copiée dans un autre
programme, sélectionnez le programme souhaité à l'aide
du gestionnaire de fichiers et marquez la séquence
derrière laquelle doit se faire l'insertion.
U
U
Insérer une partie de programme mémorisée : appuyer sur la
softkey INSERER BLOC
Fermer la fonction de marquage : appuyer sur QUITTER SÉLECTION
Fonction
Softkey
Activer la fonction de marquage
Désactiver la fonction de marquage
Effacer le bloc marqué
Insérer le bloc mémorisé
Copier le bloc marqué
92
Programmation : principes de base, gestionnaire de fichiers
3.2 Ouverture et introduction de programmes
La fonction de recherche de la TNC
La fonction de recherche de la TNC vous permet de trouver n'importe
quel texte à l'intérieur d'un programme et, si nécessaire, de le
remplacer par un nouveau texte.
Rechercher n'importe quel texte
U Si nécessaire, sélectionner la séquence qui contient le mot à
rechercher
U Sélectionner la fonction de recherche : la TNC ouvre la
fenêtre de recherche et affiche dans la barre de
softkeys les fonctions de recherche disponibles (voir
tableau des fonctions de recherche)
+40
U
Introduire le texte à rechercher, attention aux
minuscules/majuscules
U
Lancer la recherche : la TNC saute à la séquence
suivante contenant le texte recherché
U
Poursuivre la recherche : la TNC saute à la séquence
suivante contenant le texte recherché
U
Fermer la fonction de recherche
HEIDENHAIN TNC 320
93
3.2 Ouverture et introduction de programmes
Recherche/remplacement de n'importe quel texte
La fonction Rechercher/Remplacer n'est pas possible si
„ un programme est protégé
„ le programme est en cours d'exécution
Avec la fonction REMPLACE TOUS, faites attention à ne
pas remplacer malencontreusement des parties de texte
qui doivent en fait rester inchangées. Les textes
remplacés sont perdus définitivement.
U
Si nécessaire, sélectionner la séquence qui contient le mot à
rechercher
U Sélectionner la fonction de recherche : la TNC ouvre la
fenêtre de recherche et affiche dans la barre de
softkeys les fonctions de recherche disponibles
94
U
Introduire le texte à rechercher, attention aux
minuscules/majuscules. Valider avec la touche ENT
U
Introduire le texte à utiliser, attention aux
minuscules/majuscules
U
Lancer la recherche : la TNC saute au texte recherché
suivant
U
Pour remplacer l'expression de texte et ensuite sauter
à la prochaine expression recherchée : appuyer sur la
softkey REMPLACER, ou bien pour remplacer toutes
les expressions recherchées : appuyer sur la softkey
REMPLACE TOUS, ou bien pour ne pas remplacer
l'expression et sauter à l'expression suivante
recherchée : appuyer sur la softkey RECHERCHE
U
Fermer la fonction de recherche
Programmation : principes de base, gestionnaire de fichiers
3.3 Gestionnaire de fichiers : principes de base
3.3 Gestionnaire de fichiers :
principes de base
Fichiers
Fichiers dans la TNC
Type
Programmes
en format HEIDENHAIN
en format DIN/ISO
.H
.I
Tableaux pour
Outils
Changeur d'outils
Palettes
Points zéro
Points
Presets
Systèmes de palpage
Fichier de sauvegarde
.T
.TCH
.P
.D
.PNT
.PR
.TP
.BAK
Textes sous forme de
Fichiers ASCII
Fichiers de protocole
Fichiers d’aide
.A
.TXT
.CHM
Lorsque vous introduisez un programme d’usinage dans la TNC, vous
lui attribuez tout d’abord un nom. La TNC le mémorise sur le disque
dur sous forme d’un fichier de même nom. La TNC mémorise
également les textes et tableaux sous forme de fichiers.
Pour retrouver rapidement vos fichiers et les gérer, la TNC dispose
d’une fenêtre spéciale réservée à la gestion des fichiers. Vous pouvez
y appeler, copier, renommer et effacer les différents fichiers.
Avec la TNC, vous pouvez gérer et mémoriser des fichiers d'une taille
maximale de 300 Mo.
Selon la configuration, la TNC crée un fichier de
sauvegarde *.bak après l'édition et l'enregistrement de
programmes CN. Cette sauvegarde influe sur la taille de la
mémoire disponible.
HEIDENHAIN TNC 320
95
3.3 Gestionnaire de fichiers : principes de base
Noms de fichiers
Pour les programmes, tableaux et textes, la TNC ajoute une extension
qui est séparée du nom du fichier par un point. Cette extension
identifie le type du fichier.
PROG20
.H
Nom de fichier
Type de fichier
Les noms de fichiers ne doivent pas excéder 25 caractères, sinon la
TNC n'affiche pas le nom complet du programme. Caractères non
autorisés dans les noms de fichiers :
! “ ’ ( ) * + / ; < = > ? [ ] ^ ` { | } ~
Les noms de fichiers sont saisis au moyen du clavier
virtuel dans l'écran(voir „Clavier virtuel” à la page 114).
Vous ne pouvez pas non plus utiliser les espaces (HEX 20)
ou le caractère d'effacement (HEX 7F) dans les noms des
fichiers.
La longueur maximale autorisée pour les noms de fichiers
doit être telle que la longueur limite du chemin de 256
caractères ne soit pas dépassée(voir „Chemins d'accès” à
la page 97).
Sauvegarde des données
HEIDENHAIN conseille de faire régulièrement des sauvegardes sur un
PC des derniers programmes et fichiers créés sur la TNC.
Le logiciel gratuit de transmission des données TNCremo NT
HEIDENHAIN permet de créer facilement des sauvegardes des
fichiers mémorisés dans la TNC.
Vous devez en plus disposer d’un support de données sur lequel sont
sauvegardées toutes les données spécifiques de votre machine
(programme PLC, paramètres-machine, etc.). Pour cela, adressezvous éventuellement au constructeur de votre machine.
Pensez de temps en temps à effacer les fichiers dont
vous n'avez plus besoin de manière à ce que la TNC
dispose toujours de suffisamment de mémoire pour les
fichiers-système (tableau d'outils, par exemple).
96
Programmation : principes de base, gestionnaire de fichiers
3.4 Travailler avec le gestionnaire de fichiers
3.4 Travailler avec le gestionnaire
de fichiers
Répertoires
Comme vous pouvez mémoriser de nombreux programmes ou
fichiers sur le disque dur, vous devez classer les différents fichiers
dans des répertoires (classeurs) pour conserver une vue d'ensemble.
Dans ces répertoires, vous pouvez créer d'autres répertoires appelés
sous-répertoires. Avec la touche -/+ ou ENT, vous pouvez rendre
visible/invisible les sous-répertoires.
Chemins d'accès
Un chemin d’accès indique le lecteur et les différents répertoires ou
sous-répertoires où un fichier est mémorisé. Les différents éléments
sont séparés par „\“.
La longueur max. autorisée pour le chemin d’accès, c'està-dire tous les caractères du lecteur, du répertoire et du
nom de fichier (y compris son extension), ne doit pas
dépasser 256 caractères!
Exemple
Dans l'unité TNC:\a été mis le répertoire AUFTR1. Puis, dans le
répertoire AUFTR1, on a créé un sous-répertoire NCPROG à l'intérieur
duquel on a copié le programme d'usinage PROG1.H. Le programme
d'usinage a donc le chemin d'accès suivant :
TNC:\
AUFTR1
TNC:\AUFTR1\NCPROG\PROG1.H
NCPROG
Le graphique de droite montre un exemple d'affichage des répertoires
avec les différents chemins d'accès.
WZTAB
A35K941
ZYLM
TESTPROG
HUBER
KAR25T
HEIDENHAIN TNC 320
97
3.4 Travailler avec le gestionnaire de fichiers
Vue d'ensemble : fonctions du gestionnaire de
fichiers
Fonction
Softkey
Page
Copier un fichier unique
Page 103
Afficher un type de fichier particulier
Page 100
Créer un nouveau fichier
Page 102
Afficher les 10 derniers fichiers
sélectionnés
Page 104
Effacer un fichier ou un répertoire
Page 104
Marquer un fichier
Page 106
Renommer un fichier
Page 107
Protéger un fichier contre l'effacement
ou l'écriture
Page 108
Annuler la protection d’un fichier
Page 108
Importer un tableau d'outils
Page 144
Gérer les lecteurs réseau
Page 111
Sélectionner l'éditeur
Page 108
Trier les fichiers d’après leurs
caractéristiques
Page 107
Copier un répertoire
Page 103
Effacer un répertoire et tous ses sousrépertoires
Afficher les répertoires d'un lecteur
Renommer un répertoire
Créer un nouveau répertoire
98
Programmation : principes de base, gestionnaire de fichiers
3.4 Travailler avec le gestionnaire de fichiers
Appeler le gestionnaire de fichiers
Appuyer sur la touche PGM MGT : la TNC affiche la
fenêtre du gestionnaire de fichiers (la figure ci-contre
montre la configuration par défaut. Si la TNC affiche
un autre partage de l'écran, appuyez sur la softkey
FENETRE)
La petite fenêtre de gauche affiche les lecteurs disponibles ainsi que
les répertoires. Les lecteurs désignent les appareils avec lesquels
seront mémorisées ou transmises les données. Un lecteur
correspond au disque dur de la TNC; les autres lecteurs sont les
interfaces (RS232, RS422, Ethernet) auxquelles vous pouvez
raccorder, par exemple, un PC. Un répertoire est toujours identifié par
un symbole de classeur (à gauche) et le nom du répertoire (à droite).
Les sous-répertoires sont décalés vers la droite. Si un triangle se
trouve devant le symbole du classeur, cela signifie qu'il existe d'autres
sous-répertoires que vous pouvez afficher avec la touche -/+ ou ENT.
La fenêtre large de droite affiche tous les fichiers mémorisés dans le
répertoire sélectionné. Pour chaque fichier, plusieurs informations
sont détaillées dans le tableau ci-dessous.
Affichage
Signification
Nom de fichier
Nom avec 25 caractères max.
Type
Type de fichier
Octets :
Taille du fichier en octets
Etat
Propriétés du fichier :
E
Programme sélectionné en mode
Programmation
S
Programme sélectionné en mode Test de
programme
M
Programme sélectionné dans un mode
Exécution de programme
Fichier protégé contre l'effacement ou
l'écriture
Fichier protégé contre l'effacement ou
l'écriture car exécution juste terminée
Date
Date de la dernière modification du fichier
Heure
Heure de la dernière modification du fichier
HEIDENHAIN TNC 320
99
3.4 Travailler avec le gestionnaire de fichiers
Sélectionner les lecteurs, répertoires et fichiers
Appeler le gestionnaire de fichiers
Utilisez les touches fléchées ou les softkeys pour déplacer la
surbrillance à l'endroit souhaité de l'écran :
Déplace la surbrillance de la fenêtre de droite à la
fenêtre de gauche et inversement
Déplace la surbrillance dans une fenêtre vers le haut
et le bas
Déplace la surbrillance dans la fenêtre, page suivante,
page précédente
Etape 1 : sélectionner le lecteur
Sélectionner le lecteur dans la fenêtre de gauche :
Sélectionner le lecteur : appuyer sur la softkey
SELECT. ou
Appuyer sur la touche ENT
Etape 2 : sélectionner le répertoire
Marquer le répertoire dans la fenêtre de gauche : la fenêtre de droite
affiche automatiquement tous les fichiers du répertoire marqué (en
surbrillance).
100
Programmation : principes de base, gestionnaire de fichiers
3.4 Travailler avec le gestionnaire de fichiers
Etape 3 : sélectionner un fichier
Appuyer sur la softkey SELECT. TYPE
Appuyer sur la softkey du type de fichier souhaité ou
afficher tous les fichiers : appuyer sur la softkey AFF.
TOUS ou
Marquer le fichier dans la fenêtre de droite :
Appuyer sur la softkey SELECT. ou
Appuyer sur la touche ENT
La TNC active le fichier sélectionné dans le mode de fonctionnement
dans lequel vous avez appelé le gestionnaire de fichiers
HEIDENHAIN TNC 320
101
3.4 Travailler avec le gestionnaire de fichiers
Créer un nouveau répertoire
Dans la fenêtre de gauche, marquez le répertoire à l’intérieur duquel
vous souhaitez créer un sous-répertoire
NOUV
Introduire le nom du nouveau répertoire, appuyer sur
la touche ENT
CRÉER RÉPERTOIRE \NOUV?
Valider avec la softkey OUI ou
Quitter avec la softkey NON
Créer un nouveau répertoire
Sélectionnez le répertoire dans lequel vous désirez créer le nouveau
fichier
NOUV
Introduire le nom du nouveau fichier avec son
extension, appuyer sur la touche ENT
Ouvrir le dialogue de création d'un nouveau fichier
NOUVE
102
Introduire le nom du nouveau fichier avec son
extension, appuyer sur la touche ENT
Programmation : principes de base, gestionnaire de fichiers
3.4 Travailler avec le gestionnaire de fichiers
Copier un fichier donné
U
Déplacez la surbrillance sur le fichier que vous souhaitez copier
U Appuyer sur la softkey COPIER : sélectionner la
fonction copie. La TNC ouvre une fenêtre auxiliaire
U
Introduire le nom du fichier-cible et valider avec la
touche ENT ou la softkey OK : la TNC copie le fichier
vers le répertoire en cours ou vers le répertoire-cible
sélectionné. Le fichier d'origine est conservé ou
Copier un fichier vers un autre répertoire
U
U
Sélectionner le partage de l'écran avec fenêtres de mêmes
dimensions
Afficher les répertoires dans les deux fenêtres : appuyer sur la
softkey CHEM
Fenêtre de droite
U
Déplacer la surbrillance sur le répertoire vers lequel on désire copier
les fichiers et afficher avec la touche ENT les fichiers de ce
répertoire
Fenêtre de gauche
U
Sélectionner le répertoire avec les fichiers que l'on désire copier et
afficher les fichiers avec la touche ENT
U Afficher les fonctions de marquage des fichiers
U
Déplacer la surbrillance sur le fichier que l'on désire
copier et le marquer. Si vous le souhaitez, marquez
d’autres fichiers de la même manière
U
Copier les fichiers marqués dans le répertoire-cible
Autres fonctions de marquage : voir „Marquer des fichiers”, page 106.
Si vous avez marqué des fichiers aussi bien dans la fenêtre de droite
que dans celle de gauche, la TNC copie alors à partir du répertoire
contenant la surbrillance.
Copier un répertoire
U
U
U
Déplacez la surbrillance dans la fenêtre de droite, sur le répertoire
que vous voulez copier.
Appuyez sur la softkey COPIER : la TNC affiche la fenêtre de
sélection du répertoire-cible
Sélectionner le répertoire-cible et valider avec la touche ENT ou la
softkey OK : la TNC copie le répertoire sélectionné (y compris ses
sous-répertoires) dans le répertoire-cible sélectionné
HEIDENHAIN TNC 320
103
3.4 Travailler avec le gestionnaire de fichiers
Sélectionner l'un des derniers fichiers
sélectionnés
Appeler le gestionnaire de fichiers
Afficher les 10 derniers fichiers sélectionnés :
appuyer sur la softkey DERNIERS FICHIERS
Utilisez les touches fléchées pour déplacer la surbrillance sur le fichier
que vous voulez sélectionner:
Déplace la surbrillance dans une fenêtre vers le haut
et le bas
Sélectionner le fichier : appuyer sur la softkey OK ou
Appuyer sur la touche ENT
Effacer un fichier
L'effacement de fichiers est définitif et l'action n'est pas
rétroactive!
U
Déplacez la surbrillance sur le fichier que vous souhaitez effacer
U Sélectionner la fonction effacer : appuyer sur la
softkey EFFACER. La TNC demande si le fichier doit
être réellement effacé
104
U
Valider l'effacement : appuyer sur la softkey OK ou
U
annuler l'effacement : appuyer sur la softkey
ANNULER
Programmation : principes de base, gestionnaire de fichiers
3.4 Travailler avec le gestionnaire de fichiers
Effacer un répertoire
Vous ne pouvez plus annuler rétroactivement l'effacement
de répertoires et de fichiers!
U
Déplacez la surbrillance sur le répertoire que vous souhaitez effacer
U Sélectionner la fonction effacer : appuyer sur la
softkey EFFACER. La TNC demande si le répertoire
doit être réellement effacé avec tous ses sousrépertoires et fichiers
U
Confirmer l'effacement : appuyer sur la softkey OK ou
U
annuler l'effacement : appuyer sur la softkey
ANNULER
HEIDENHAIN TNC 320
105
3.4 Travailler avec le gestionnaire de fichiers
Marquer des fichiers
Fonction de marquage
Softkey
Marquer un fichier donné
Marquer tous les fichiers dans le répertoire
Annuler le marquage d'un fichier donné
Annuler le marquage de tous les fichiers
Copier tous les fichiers marqués
Vous pouvez utiliser les fonctions telles que copier ou effacer des
fichiers, aussi bien pour un ou plusieurs fichiers simultanément. Pour
marquer plusieurs fichiers, procédez de la manière suivante :
Déplacer la surbrillance sur le premier fichier
Afficher les fonctions de sélection : appuyer sur la
softkey MARQUER
Sélectionner un fichier : appuyer sur la softkey
MARQUER FICHIER
Déplacer la surbrillance sur un autre fichier. Ne
fonctionne qu'avec les softkeys ; ne pas naviguer
avec les touches fléchées!
Marquer un autre fichier : appuyer sur la softkey
MARQUER etc.
Copier les fichiers marqués : sélectionner la softkey
COPIER MARQUER ou
Effacer les fichiers marqués : appuyer sur la softkey
FIN pour quitter les fonctions de marquage, puis sur
la softkey EFFACER pour effacer les fichiers marqués
106
Programmation : principes de base, gestionnaire de fichiers
3.4 Travailler avec le gestionnaire de fichiers
Renommer un fichier
U
Déplacez la surbrillance sur le fichier que vous souhaitez renommer
U Sélectionner la fonction renommer
U
Introduire le nouveau nom du fichier; le type de
fichiers ne peut pas être modifié
U
Renommer le fichier : appuyer sur la softkey OK ou sur
la touche ENT
Classer les fichiers
U
Sélectionnez le répertoire dans lequel vous souhaitez trier les
fichiers
U Appuyer sur la softkey TRIER
U
Sélectionner la softkey avec le critère de tri
correspondant
HEIDENHAIN TNC 320
107
3.4 Travailler avec le gestionnaire de fichiers
Autres fonctions
Protéger un fichier/annuler la protection du fichier
U Déplacez la surbrillance sur le fichier que vous souhaitez protéger
U Sélectionner les autres fonctions : appuyez sur la
softkey AUTRES FONCTIONS
U
Activez la protection des fichiers : appuyer sur la
softkey PROTEGER. Le fichier reçoit l'état P
U
Annuler la protection des fichiers : appuyer sur la
softkey NON PROT.
Sélectionner l'éditeur
U Déplacez la surbrillance dans la fenêtre de droite, sur le fichier que
vous voulez ouvrir
U Sélectionner les autres fonctions : appuyez sur la
softkey AUTRES FONCTIONS
U
Sélection de l’éditeur avec lequel on veut ouvrir le
fichier sélectionné : appuyer sur la softkey
SELECTION EDITEUR
U
Marquer l’éditeur désiré
U
Appuyer sur la softkey OK pour ouvrir le fichier
Connecter/déconnecter un périphérique USB
Déplacez la surbrillance vers la fenêtre de gauche
U Sélectionner les autres fonctions : appuyez sur la
softkey AUTRES FONCTIONS
U
U
Commuter la barre de softkeys
U
Rechercher le périphérique USB
U
Pour déconnecter le périphérique USB : déplacez la
surbrillance sur le périphérique USB
U
Enlever le périphérique USB
Autres informations : voir „Périphériques USB sur la TNC”, page 112.
108
Programmation : principes de base, gestionnaire de fichiers
3.4 Travailler avec le gestionnaire de fichiers
Transfert des données vers/à partir d'un support
externe de données
Avant de pouvoir transférer les données vers un support
externe, vous devez configurer l'interface de données
(voir „Configurer les interfaces de données” à la page
444).
Si vous transférez des données via l'interface série, des
problèmes peuvent apparaître en fonction du logiciel de
transmission utilisé. Ceux-ci peuvent être résolus en
réitérant la transmission.
Appeler le gestionnaire de fichiers
Sélectionner le partage de l'écran pour le transfert
des données : appuyer sur la softkey FENETRE. La
TNC affiche dans la moitié gauche de l'écran tous les
fichiers du répertoire actuel et, dans la moitié droite,
tous les fichiers mémorisés dans le répertoire-racine
TNC:\
Utilisez les touches fléchées pour déplacer la surbrillance sur le fichier
que vous voulez transférer :
Déplace la surbrillance dans une fenêtre vers le haut
et le bas
Déplace la surbrillance de la fenêtre de droite à la
fenêtre de gauche et inversement
Si vous désirez copier de la TNC vers le support externe de données,
déplacez la surbrillance de la fenêtre de gauche sur le fichier à
transférer.
HEIDENHAIN TNC 320
109
3.4 Travailler avec le gestionnaire de fichiers
Si vous désirez copier du support externe de données vers la TNC,
déplacez la surbrillance de la fenêtre de droite sur le fichier à
transférer.
Sélectionner un autre lecteur ou répertoire : appuyer
sur la softkey servant à sélectionner un répertoire, la
TNC ouvre une fenêtre auxiliaire. Dans la fenêtre
auxiliaire, sélectionnez le répertoire désiré avec les
touches fléchées et la touche ENT
Transférer un fichier donné : appuyer sur la softkey
COPIER ou
transférer plusieurs fichiers : appuyer sur la softkey
MARQUER (deuxième barre de softkeys, voir
„Marquer des fichiers”, page 106), ou
Valider avec la softkey OK ou avec la touche ENT. La TNC affiche une
fenêtre délivrant des informations sur le déroulement de l'opération
de copie ou
Fermer le transfert des données : déplacer la
surbrillance vers la fenêtre de gauche, puis appuyer
sur le softkey FENETRE. La TNC affiche à nouveau le
fenêtre standard du gestionnaire des fichiers
Pour pouvoir sélectionner un autre répertoire avec la
double représentation de fenêtre, appuyez sur la softkey
AFFICH ARBOR.. Lorsque vous appuyez sur la softkey
AFFICHER FICHIERS, la TNC affiche le contenu du
répertoire sélectionné!
110
Programmation : principes de base, gestionnaire de fichiers
3.4 Travailler avec le gestionnaire de fichiers
La TNC en réseau
Raccordement de la carte Ethernet à votre réseau : voir
„Interface Ethernet”, page 449.
Les messages d'erreur liés au réseau sont enregistrés par
la TNC dans un procès-verbalvoir „Interface Ethernet”,
page 449.
Si la TNC est raccordée à un réseau, des lecteurs supplémentaires
sont disponibles dans la fenêtre gauche des répertoires (voir figure).
Toutes les fonctions décrites précédemment (sélection du lecteur,
copie de fichiers, etc.) sont également valables pour les lecteurs
réseau dans la mesure où l'accès vous y est autorisé.
Connecter et déconnecter le lecteur réseau
U Sélectionner le gestionnaire de fichiers : appuyer sur
la touche PGM MGT; si nécessaire sélectionner avec
la softkey FENETRE le partage d'écran comme
indiqué dans la figure en haut à droite
U
Gestion de lecteurs réseau : appuyer sur la softkey
RESEAU (deuxième barre de softkeys). Dans la
fenêtre de droite, la TNC affiche les lecteurs réseau
auxquels vous avez accès. A l'aide des softkeys ciaprès, vous définissez les liaisons pour chaque
lecteur
Fonction
Softkey
Etablir la liaison réseau, la TNC marque la colonne
Mnt lorsque la liaison est active.
Supprimer la connexion réseau
Etablir automatiquement la liaison réseau à la
mise sous tension de la TNC. La TNC marque la
colonne Auto lorsque la liaison est établie
automatiquement
Utilisez la fonction PING pour tester votre liaison
réseau
Lorsque vous appuyez sur la softkey INFO
RESEAU, la TNC affiche la configuration actuelle
du réseau
HEIDENHAIN TNC 320
111
3.4 Travailler avec le gestionnaire de fichiers
Périphériques USB sur la TNC
Vous pouvez très facilement sauvegarder vos données ou les
transférer sur la TNC à l'aide de périphériques USB. La TNC gère les
périphériques USB suivants :
„ Lecteurs de disquettes avec système de fichiers FAT/VFAT
„ Memory sticks avec système de fichiers FAT/VFAT
„ Disques durs avec système de fichiers FAT/VFAT
„ Lecteurs CD-ROM avec système de fichiers Joliet (ISO9660)
La TNC détecte automatiquement ces périphériques USB à la
connexion. Les périphériques USB avec d'autres système de fichiers
(NTFS, par exemple) ne sont pas gérés par la TNC. Lors de la
connexion, la TNC délivre le message d'erreur USB : appareil non
géré par la TNC.
La TNC délivre le message d'erreur USB : appareil non
géré par la TNC même lorsque vous raccordez un hub
USB. Dans ce cas, acquittez tout simplement le message
avec la touche CE.
En principe, tous les périphériques USB avec les système
de fichiers indiqués ci-dessus peuvent être connectés à la
TNC. Dans certains cas, il se peut qu'un périphérique USB
ne soit pas détecté par la commande. Il faut alors utiliser
un autre périphérique USB.
Dans le gestionnaire de fichiers, les périphériques USB sont affichés
dans l'arborescence en tant que lecteurs. Vous pouvez donc utiliser
les fonctions de gestion de fichiers décrites précédemment.
Pour déconnecter un périphérique USB, vous devez
systématiquement procéder de la manière suivante :
U
Sélectionner le gestionnaire de fichiers : appuyer sur
la touche PGM MGT
U
Avec la touche fléchée, sélectionner la fenêtre gauche
U
Avec une touche fléchée, sélectionner le périphérique
USB à déconnecter
U
Commuter la barre des softkeys
U
Sélectionner autres fonctions
U
Sélectionner la fonction de déconnexion de
périphériques USB : la TNC supprime le périphérique
USB de l'arborescence
U
Fermer le gestionnaire de fichiers
A l'inverse, en appuyant sur la softkey suivante, vous pouvez
reconnecter un périphérique USB précédemment déconnecté :
U
112
Sélectionner la fonction de reconnexion de
périphériques USB
Programmation : principes de base, gestionnaire de fichiers
Programmation : aides à
la programmation
4.1 Clavier virtuel
4.1 Clavier virtuel
Vous pouvez introduire les lettres et caractères spéciaux au moyen du
clavier virtuel ou bien (s’il existe) d’un clavier de PC raccordé au port
USB.
Introduire le texte avec le clavier virtuel
U
U
U
U
U
Appuyez sur la touche GOTO si vous désirez introduire un texte avec
le clavier virtuel, par exemple le nom d’un programme ou d’un
répertoire
La TNC ouvre alors une fenêtre affichant le pavé numérique de la
TNC avec les lettres correspondantes
Pour déplacer le curseur sur le caractère souhaité, appuyez
plusieurs fois si nécessaire sur la touche correspondante
Avant d'introduire le caractère suivant, attendez que la TNC ai validé
dans le champ le caractère sélectionné
Avec la softkey OK, valider le texte dans le champ de dialogue
ouvert
La softkey abc/ABC permet de choisir entre les majuscules et les
minuscules. Si le constructeur de votre machine a défini d’autres
caractères spéciaux, vous pouvez appeler ou insérer ceux-ci à l’aide de
la softkey CARACTERES SPECIAUX. Pour effacer un caractère donné,
utilisez la softkey BACKSPACE (effacement du dernier caractère).
114
Programmation : aides à la programmation
4.2 Insertion de commentaires
4.2 Insertion de commentaires
Application
Vous pouvez insérer des commentaires dans un programme
d’usinage pour apporter des précisions sur les étapes du programme
ou noter des remarques.
Les noms de fichiers sont saisis au moyen du clavier
virtuel(voir „Clavier virtuel” à la page 114).
Lorsque la TNC ne peut plus afficher intégralement un
commentaire, le caractère >> est affiché dans d'écran.
Le dernier caractère d'une séquence de commentaire ne
doit pas être un tilde (~).
Commentaire dans une séquence donnée
U
U
U
U
U
U
Sélectionner la séquence derrière laquelle vous désirez insérer le
commentaire
Sélectionner les fonctions spéciales : appuyer sur la touche
SPEC FCT
Sélectionner les fonctions de programme : appuyer sur la softkey
FONCTIONS PROGRAMME.
Commuter la barre de softkeys vers la gauche
Appuyer sur la softkey INSÉRER COMMENT.
Introduire le commentaire avec le clavier virtuel(voir „Clavier virtuel”
à la page 114) et fermer la séquence avec END
Quand un clavier USB est raccordé au port série, vous
pouvez insérer directement un commentaire en appuyant
sur la touche ; du clavier du PC.
HEIDENHAIN TNC 320
115
4.2 Insertion de commentaires
Fonctions lors d'édition de commentaire
Fonction
Softkey
Aller au début du commentaire
Aller à la fin du commentaire
Aller au début d'un mot. Les mots doivent être
séparés par un espace
Aller à la fin d'un mot. Les mots doivent être
séparés par un espace
Commuter entre les modes Insérer et Ecraser
116
Programmation : aides à la programmation
4.3 Articulation de programmes
4.3 Articulation de programmes
Définition, application
La TNC vous permet de commenter vos programmes d'usinage à
l'aide de séquences d'articulation. Les séquences d'articulation sont
des textes courts (37 caractères max) constitués de commentaires ou
de titres pour les lignes de programme correspondantes.
Des séquences d’articulation judicieuses permettent une meilleure
clarté et compréhension pour les programmes longs et complexes.
Cela facilite ainsi des modifications ultérieures du programme.
L'insertion de séquences d'articulation est possible à n'importe quel
endroit du programme d'usinage. Une fenêtre dédiée permet non
seulement de les afficher mais aussi de les modifier ou de les
compléter.
Les points d'articulation insérés sont gérés par la TNC dans un fichier
séparé (extension .SEC.DEP). Ainsi la vitesse de navigation à
l'intérieur de la fenêtre d'articulation est améliorée.
Afficher la fenêtre d’articulation / changer de
fenêtre active
U
Afficher la fenêtre d’articulation : sélectionner le
partage d'écran PROGRAMME + ARTICUL.
U
Changer de fenêtre active : appuyer sur la softkey
„Changer fenêtre“
Insérer une séquence d’articulation dans la
fenêtre du programme (à gauche)
U
Sélectionner la séquence derrière laquelle vous désirez insérer la
séquence d’articulation
U Appuyer sur la softkey INSERER ARTICULATION ou
sur la touche * du clavier ASCII
U
Introduire le texte d’articulation avec le clavier virtuel
U
Si nécessaire, modifier par softkey le retrait
d'articulation
Sélectionner des séquences avec la fenêtre
d’articulations
Si vous sautez d’une articulation à une autre dans la fenêtre
d’articulation, la TNC affiche simultanément la séquence dans la
fenêtre du programme. Ceci vous permet de sauter rapidement de
grandes parties de programme.
HEIDENHAIN TNC 320
117
4.4 La calculatrice
4.4 La calculatrice
Utilisation
La TNC dispose d'une calculatrice possédant les principales fonctions
mathématiques.
U
U
Ouvrir ou fermer la calculatrice avec la touche CALC
Sélectionner les fonctions de calcul sur le clavier alphabétique au
moyen de raccourcis. Les raccourcis sont en couleur sur la
calculatrice
Fonction de calcul
Raccourci (touche)
Addition
+
Soustraction
–
Multiplication
*
Division
/
Calcul avec parenthèses
()
Arc-cosinus
ARC
Sinus
SIN
Cosinus
COS
Tangente
TAN
Elévation à la puissance
X^Y
Extraire la racine carrée
SQRT
Fonction inverse
1/x
PI (3.14159265359)
PI
Ajouter une valeur à la mémoire
tampon
M+
Mettre une valeur en mémoire
tampon
MS
Rappel mémoire tampon
MR
Effacer la mémoire tampon
MC
Logarithme Naturel
LN
Logarithme
LOG
Fonction exponentielle
e^x
Vérifier le signe
SGN
118
Programmation : aides à la programmation
Raccourci (touche)
Extraire la valeur absolue
ABS
Partie entière
INT
Partie décimale
FRAC
Valeur modulo
MOD
Sélectionner la vue
Vue
Effacer une valeur
CE
Unité de mesure
MM ou POUCE
Affichage de valeurs angulaires
DEG (degrés) ou RAD (radians)
Mode d'affichage de la valeur
numérique
DEC (décimal) ou HEX
(hexadécimal)
4.4 La calculatrice
Fonction de calcul
Transférer dans le programme une valeur calculée
U Avec les touches fléchées, sélectionner le mot dans lequel vous
voulez transférer la valeur calculée
U Avec la touche CALC, ouvrir la calculatrice et faire le calcul
U Appuyer sur la touche „Validation de la position effective“; la TNC
affiche une barre de softkeys
U Appuyer sur la softkey CALC : la TNC transfert la valeur dans le
champ de saisie ouvert et ferme la calculatrice
Positionner la calculatrice
Les différents réglages pour déplacer la calculatrice se trouvent sous
la softkey FONCTIONS AUXIL:
Fonction
Softkey
Décaler la fenêtre dans la direction de la flèche
Régler l'incrément de décalage
Positionner la calculatrice au centre
HEIDENHAIN TNC 320
119
4.5 Graphique de programmation
4.5 Graphique de programmation
Graphique de programmation simultané/non
simultané
Simultanément à la création d'un programme, la TNC peut afficher un
graphique filaire 2D du contour programmé.
U
Afficher le programme à gauche et le graphique à droite : appuyer
sur la touche PARTAGE ECRAN et sur la softkey PGM +
GRAPHIQUE
U Softkey DESSIN AUTO sur ON. Simultanément à
l'introduction des lignes du programme, la TNC
affiche chaque élément de contour dans la fenêtre
graphique de droite.
Quand l'affichage du graphique n'est pas souhaité, réglez la softkey
DESSIN AUTO sur OFF.
DESSIN AUTO ON ne visualise pas les répétitions de parties de
programme.
Exécution du graphique en programmation d'un
programme existant
U
A l'aide des touches fléchées, sélectionnez la séquence jusqu'à
laquelle le graphique doit être exécuté ou appuyez sur GOTO et
saisir directement le numéro de la séquence choisie
U Relancer le graphique : appuyer sur la softkey RESET
+ START
Autres fonctions :
Fonction
Softkey
Exécuter entièrement le graphique de
programmation
Exécuter pas à pas le graphique de
programmation
Exécuter entièrement le graphique de
programmation ou le finaliser après RESET +
START
Interrompre le graphique de programmation.
Cette softkey n’apparaît que quand la TNC est en
cours d'exécution d'un graphique de
programmation
120
Programmation : aides à la programmation
4.5 Graphique de programmation
Afficher ou non les numéros de séquence
U
Commuter la barre de softkeys : voir figure
U
Afficher les numéros de séquence : régler la softkey
AFFICHER OMETTRE NO SEQU. sur AFFICHER
U
Omettre les numéros de séquence : régler la softkey
AFFICHER OMETTRE NO SEQU. sur OMETTRE
Effacer le graphique
U
Commuter la barre de softkeys : voir figure
U
Effacer le graphique : appuyer sur la softkey EFFACER
GRAPHIQUE
Agrandissement ou réduction d'une découpe
Vous pouvez définir vous-même un détail pour le graphique.
Sélectionner avec un cadre la découpe pour l’agrandissement ou la
réduction.
U
Sélectionner la barre de softkeys pour l’agrandissement/réduction
de la découpe (deuxième barre, voir figure)
Les fonctions suivantes sont disponibles :
Fonction
Softkey
Afficher le cadre et le décaler. Pour décaler en
continu, maintenir enfoncée la softkey
concernée
Réduire le cadre – pour réduire en continu,
maintenir enfoncée la softkey
Agrandir le cadre – pour agrandir en continu,
maintenir enfoncée la softkey
U
Avec la softkey DETAIL PIECE BRUTE, valider la zone
sélectionnée
La softkey PIECE BR. DITO BLK FORM vous permet de rétablir la
découpe d'origine.
HEIDENHAIN TNC 320
121
4.6 Messages d'erreur
4.6 Messages d'erreur
Afficher les erreurs
La TNC affiche entre autres des messages d'erreur dans les cas
suivants :
„ introductions erronées
„ erreurs logiques dans le programme
„ les éléments du contour ne sont pas exécutables
„ utilisation du palpeur non conforme aux instructions
Une erreur détectée est affichée en rouge, en haut de l'écran. Les
messages d'erreur longs et sur plusieurs lignes sont raccourcis.
Quand une erreur est détectée dans le mode parallèle, elle est
signalée par le mot „Erreur“ en rouge. L'information complète de
toutes les erreurs présentes est affichée dans la fenêtre des
messages d'erreur.
Si, d'une manière exceptionnelle, une „erreur de traitement des
données“, apparaissait, la TNC ouvrirait alors automatiquement la
fenêtre d'erreurs. Vous ne pouvez pas remédier à une telle erreur.
Fermez le système et redémarrez la TNC.
Le message d'erreur en haut de l'écran reste affiché jusqu'à ce que
vous l'effaciez ou qu'il soit remplacé par un message de priorité plus
élevée.
Un message d'erreur contenant le numéro d'une séquence de
programme a été provoqué par cette séquence ou une séquence
précédente.
Ouvrir la fenêtre des messages d'erreur
U
Appuyez sur la touche ERR. La TNC ouvre la fenêtre
des messages d'erreur et affiche en totalité tous les
messages d'erreur présents.
Fermer la fenêtre de messages d'erreur
122
U
Appuyez sur la softkey FIN ou
U
Appuyez sur la touche ERR. La TNC ferme la fenêtre
des messages d'erreur
Programmation : aides à la programmation
4.6 Messages d'erreur
Messages d'erreur détaillés
La TNC affiche les sources d’erreur possibles ainsi que les possibilités
d’y remédier :
U
Ouvrir la fenêtre des messages d'erreur
U Informations relatives à l'origine de l'erreur et à la
méthode pour la corriger : positionnez la surbrillance
sur le message d'erreur et appuyez sur la softkey
INFO COMPL. La TNC ouvre une fenêtre contenant
des informations sur l'origine de l'erreur et la façon
d'y remédier
U
Quitter Info : appuyez une nouvelle fois sur la softkey
INFO COMPL.
Softkey INFO INTERNE
La softkey INFO INTERNE fournit des informations sur les messages
d'erreur destinés exclusivement au service après-vente.
U
Ouvrir la fenêtre des messages d'erreur
U Informations détaillées sur le message d'erreur :
positionnez la surbrillance sur le message d’erreur et
appuyez sur la softkey INFO INTERNE. La TNC ouvre
une fenêtre avec les informations internes relatives à
l'erreur
U
Quitter les détails : appuyez une nouvelle fois sur la
softkey INFO INTERNE
HEIDENHAIN TNC 320
123
4.6 Messages d'erreur
Effacer l'erreur
Effacer une erreur en dehors de la fenêtre des messages d'erreur:
U
Effacer l'erreur/l'indication affichée en haut de
l'écran : appuyer sur la touche CE
Dans certains modes de fonctionnement (exemple:
éditeur), vous ne pouvez pas utiliser la touche CE pour
effacer l'erreur car d'autres fonctions l'utilisent déjà.
Effacer plusieurs erreurs :
U
Ouvrir la fenêtre des messages d'erreur
U Effacer une erreur particulière : positionnez la
surbrillance sur le message d'erreur et appuyez sur la
softkey EFFACER.
U
Effacer toutes les erreurs : appuyez sur la softkey
EFFACER TOUS.
Si vous n'avez pas supprimé l'origine de l'erreur, vous ne
pouvez pas l'effacer. Dans ce cas, le message d'erreur
reste affiché.
Protocole d'erreurs
La TNC mémorise dans un protocole les erreurs détectées et les
événements importants (p.ex. démarrage du système) La contenance
du protocole d'erreurs est limitée. Lorsque le fichier contenant le
protocole d'erreurs est plein, la TNC crée un second fichier. Quand ce
dernier est également plein, le premier protocole est effacé et réécrit,
etc. En cas de besoin, commutez de FICHIER ACTUEL à FICHIER
PRÉCÉDENT pour visualiser l'historique des erreurs.
U
Ouvrir la fenêtre des messages d'erreur
U Appuyer sur la softkey FICHIERS PROTOCOLE.
U
Ouvrir le protocole d'erreurs : appuyer sur la softkey
PROTOCOLE ERREURS
U
En cas de besoin, rechercher le logfile précédent :
appuyer sur la softkey FICHIER PRÉCÉDENT
U
En cas de besoin, rechercher le logfile en cours :
appuyer sur la softkey FICHIER ACTUEL
L'entrée la plus ancienne du fichier d'erreurs logfile se trouve en début
du fichier et la plus récente, à la fin.
124
Programmation : aides à la programmation
4.6 Messages d'erreur
Protocole des touches
La TNC mémorise les actions sur les touches et les événements
importants (p.ex. démarrage du système) dans le protocole des
touches. La contenance du protocole des touches est limitée. Quand
le fichier contenant le protocole des touches est plein, la commande
commute sur un second protocole. Quand ce dernier est également
plein, le premier protocole est effacé et réécrit, etc. En cas de besoin,
commutez de FICHIER ACTUEL à FICHIER PRÉCÉDENT pour
consulter l'historique des actions sur les touches.
U
Appuyer sur la softkey FICHIERS PROTOCOLE.
U
Ouvrir le protocole des touches : appuyer sur la
softkey PROTOCOLE TOUCHES
U
En cas de besoin, rechercher le logfile précédent :
appuyer sur la softkey FICHIER PRÉCÉDENT
U
En cas de besoin, rechercher le logfile en cours :
appuyer sur la softkey FICHIER ACTUEL
La TNC mémorise chaque touche actionnée sur le pupitre de
commande dans un protocole des touches. L'entrée la plus ancienne
du protocole se trouve en début de fichier et la plus récente, à la fin.
Vue d'ensemble des touches et softkeys permettant de visualiser
les logfiles :
Fonction
Softkey/touches
Saut au début du logfile
Saut à la fin du logfile
Logfile actuel
Logfile précédent
Ligne suivante/précédente
Retour au menu principal
HEIDENHAIN TNC 320
125
4.6 Messages d'erreur
Textes d'assistance
En cas de manipulation erronée, p.ex. action sur une touche non valide
ou saisie d'une valeur située en dehors de la plage autorisée, la TNC
affiche en haut de l'écran un texte d'assistance (en vert) qui signal
l'erreur de manipulation. La TNC efface le texte d'assistance dès la
prochaine saisie valable.
Mémoriser les fichiers de maintenance
Si nécessaire, vous pouvez mémoriser la „situation actuelle de la
TNC“ pour la transmettre au technicien de maintenance. La
commande mémorise ainsi un groupe de fichiers de maintenance
(logfiles d'erreurs et de touches et autres fichiers d'informations sur la
situation actuelle de la machine et l'usinage).
Si vous répétez la fonction „Enregistrer fichiers Service“, le groupe de
fichiers de maintenance précédent est remplacé par le nouveau. Pour
cette raison, utilisez un autre nom de fichier lors d'une nouvelle
exécution de la fonction.
Mémoriser les fichiers de maintenance :
U
Ouvrir la fenêtre des messages d'erreur
U Appuyer sur la softkey FICHIERS PROTOCOLE.
U
Appuyer sur la softkey ENREGISTRER FICHIERS
SERVICE : la TNC ouvre une fenêtre auxiliaire dans
laquelle vous pouvez introduire un nom au fichier de
service
U
Enregistrer les fichiers Service : appuyer sur la softkey
OK
Appeler le système d'aide TNCguide
Vous pouvez ouvrir le système d'aide de la TNC avec une softkey.
Pour l'instant, le système d'aide vous fournit pour les erreurs les
mêmes explications qu'en appuyant sur la touche HELP.
Si le constructeur de votre machine met aussi à votre
disposition un système d'aide, la TNC affiche la softkey
supplémentaire CONSTRUCT. MACHINE qui permet
d'appeler ce système d'aide supplémentaire. Vous y
trouvez d'autres informations détaillées du message
d'erreur actuel.
126
U
Appeler l'aide pour les messages d'erreur
HEIDENHAIN
U
Appeler l'aide (si elle existe) pour les messages
d'erreurs spécifiques à la machine
Programmation : aides à la programmation
4.7 Système d'aide contextuelle TNCguide
4.7 Système d'aide contextuelle
TNCguide
Application
Avant d'utiliser le TNCguide, vous devez télécharger les
fichiers d'aide disponibles sur le site HEIDENHAIN (voir
„Télécharger les fichiers d'aide actualisés” à la page 132).
Le système d'aide contextuelle TNCguide contient la documentation
utilisateur au format HTML. TNCguide est appelé avec la touche HELP
et, selon le contexte, la TNC affiche parfois directement l'information
correspondante (appel contextuel). Même lorsque vous êtes en train
d'éditer une séquence CN, le fait d'appuyer sur la touche HELP vous
permet généralement d'accéder à l'endroit de la documentation où est
décrite la fonction en cours.
La TNC essaie systématiquement de démarrer le
TNCguide dans la langue du dialogue configurée sur votre
TNC. Si les fichiers de cette langue de dialogue ne sont
pas encore disponibles sur votre TNC, la commande
ouvre alors la version anglaise.
Documentations utilisateur disponibles dans le TNCguide :
„ Manuel d'utilisation dialogue conversationnel Texte clair
(BHBKlartext.chm)
„ Manuel d'utilisation DIN/ISO (BHBIso.chm)
„ Manuel d'utilisation des cycles (BHBtchprobe.chm)
„ Liste de tous les messages d'erreur CN (errors.chm)
On dispose également du fichier-livre main.chm qui regroupe tous les
fichiers chm existants.
Le constructeur de votre machine peut éventuellement
ajouter sa propre documentation dans le TNCguide. Ces
documents apparaissent dans le fichier main.chm sous la
forme d'un livre séparé.
HEIDENHAIN TNC 320
127
4.7 Système d'aide contextuelle TNCguide
Travailler avec le TNCguide
Appeler le TNCguide
Pour ouvrir le TNCguide, il existe plusieurs possibilités :
U
U
U
Appuyer sur la touche HELP à condition que la TNC ne soit pas en
train d'afficher un message d’erreur
Cliquer avec la souris sur les softkeys si l'on a auparavant cliqué sur
le symbole d’aide affiché en bas à droite de l’écran
Ouvrir un fichier d'aide dans le gestionnaire de fichiers (fichier
CHM). La TNC peut ouvrir n'importe quel fichier CHM, même si
celui-ci n’est pas enregistré sur le disque dur de la TNC
Quand un ou plusieurs messages d'erreur sont présents,
la TNC affiche directement l'aide sur les messages
d'erreur. Pour pouvoir lancer le TNCguide, vous devez
tout d'abord acquitter tous les messages d'erreur.
La TNC démarre l'explorateur standard du système (en
règle générale Internet Explorer) quand le système d'aide
est appelé à partir du poste de programmation, sinon c'est
un explorateur adapté par HEIDENHAIN.
Une appel contextuel rattaché à de nombreuses softkeys vous permet
d'accéder directement à la description de la fonction de la softkey
concernée. Cette fonction n'est disponible qu'en utilisant la souris.
Procédez de la manière suivante :
U
Sélectionner la barre de softkeys contenant la softkey souhaitée
Avec la souris, cliquer sur le symbole de l'aide que la TNC affiche
directement à droite, au dessus de la barre de softkeys : le pointeur
de la souris se transforme en point d'interrogation
U Avec ce point d'interrogation, cliquer sur la softkey dont vous voulez
avoir l'explication : la TNC ouvre le TNCguide. S'il n'existe aucune
rubrique pour la softkey que vous avez sélectionnée, la TNC ouvre
alors le fichier-livre main.chm dans lequel vous pouvez rechercher
l'explication souhaitée, soit manuellement en texte intégral ou en
navigant
Même si vous êtes en train d'éditer une séquence CN, vous pouvez
appeler l'aide contextuelle :
U
U
U
U
Sélectionner une séquence CN au choix
Avec les touches fléchées, déplacer le curseur dans la séquence CN
Appuyer sur la touche HELP : la TNC lance le système d'aide et
affiche la description relative à la fonction en cours (ceci n'est pas
valable pour les fonctions auxiliaires ou les cycles intégrés par le
constructeur de votre machine)
128
Programmation : aides à la programmation
4.7 Système d'aide contextuelle TNCguide
Naviguer dans TNCguide
Pour naviguer dans le TNCguide, le plus simple est d'utiliser la souris.
Du côté gauche, vous apercevez la table des matières. En cliquant sur
le triangle dont la pointe est orientée vers la droite, vous pouvez
afficher les sous-chapitres, ou bien la page correspondante en cliquant
directement sur la ligne voulue. L'utilisation est identique à celle de
l’explorateur Windows.
Les liens (renvois) sont soulignés en bleu. Cliquer sur le lien pour ouvrir
la page correspondante.
Bien sûr, vous pouvez aussi utiliser le TNCguide avec les touches et
les softkeys. Le tableau suivant contient un récapitulatif des touches
et de leurs fonctions.
Les fonctions des touches décrites ci-dessous ne sont
disponibles que sur le hardware de la commande, mais
pas sur le poste de programmation.
Fonction
Softkey
„ Table des matières à gauche active :
Sélectionner l'entrée en dessous ou au dessus
„ Fenêtre de texte à droite active :
Décaler d’une page vers le bas ou vers le haut
si le texte ou les graphiques ne sont pas
affichés en totalité
„ Table des matières à gauche active :
Développer la table des matières. Lorsque la
table des matières ne peut plus être
développée, retour à la fenêtre de droite
„ Fenêtre de texte à droite active :
Sans fonction
„ Table des matières à gauche active :
Refermer la table des matières
„ Fenêtre de texte à droite active :
Sans fonction
„ Table des matières à gauche active :
Afficher la page souhaitée à l'aide de la touche
du curseur
„ Fenêtre de texte à droite active :
Si le curseur se trouve sur un lien, saut à la
page adressée
„ Table des matières à gauche active :
Commuter les onglets entre l'affichage de la
table des matières, l'affichage de l'index et la
fonction de recherche en texte intégral et
commutation sur l'écran de droite
„ Fenêtre de texte à droite active :
Retour à la fenêtre de gauche
HEIDENHAIN TNC 320
129
4.7 Système d'aide contextuelle TNCguide
Fonction
Softkey
„ Table des matières à gauche active :
Sélectionner l'enregistrement en dessous ou
au dessus
„ Fenêtre de texte à droite active :
Sauter au lien suivant
Sélectionner la dernière page affichée
Feuilleter vers l'avant si vous avez utilisé à
plusieurs reprises la fonction „Sélectionner la
dernière page affichée“
Feuilleter d'une page en arrière
Feuilleter d'une page en avant
Afficher/occulter la table des matières
Commuter entre l'affichage pleine page et
l'affichage réduit. Avec l'affichage réduit, vous ne
voyez plus qu'une partie de l'interface utilisateur
L'application TNC est prioritaire en interne, ce qui
vous permet d'utiliser la commande alors que le
TNCguide est ouvert. Si le mode affichage pleine
page est actif, la TNC réduit la taille de la fenêtre
avant le changement de focus
Fermer le TNCguide
130
Programmation : aides à la programmation
4.7 Système d'aide contextuelle TNCguide
Index des mots clefs
Les principaux mots-clés figurent dans l'index (onglet Index). Vous
pouvez les sélectionner en cliquant dessus avec la souris ou bien
directement à l'aide des touches curseur.
La page de gauche est active.
U
Sélectionner l'onglet Index
U
Activer le champ Mot clef
U
Introduire le mot à rechercher; la TNC synchronise
alors l'index sur le mot recherché pour vous
permettre de retrouver plus rapidement la rubrique
(code) dans la liste proposée ou bien
U
Mettre en surbrillance la rubrique désirée avec la
touche fléchée
U
Avec la touche ENT, afficher les informations sur la
rubrique sélectionnée
Le mot clef de recherche ne peut être saisi que via un
clavier USB raccordé à la TNC
Recherche de texte intégral
Avec l'onglet Rech., vous pouvez faire une recherche dans tout le
TNCguide d'après un mot clef.
La page de gauche est active.
U
Sélectionner l'onglet Rech.
U
Activer le champ Rech:
U
Introduire le mot à rechercher, valider avec la touche
ENT : la TNC établit la liste de tous les endroits qui
contiennent ce mot
U
Avec la touche fléchée, mettre en surbrillance
l'endroit choisi
U
Avec la touche ENT, afficher l'endroit choisi
Le mot clef de recherche ne peut être saisi que via un
clavier USB raccordé à la TNC
Vous ne pouvez utiliser la recherche de texte intégral
qu'avec un seul mot.
Si vous activez la fonction Rech. seulmt dans titres,
(avec la souris ou en positionnant le curseur et en
appuyant ensuite sur la touche espace), la TNC ne
recherche pas le texte complet mais seulement les titres.
HEIDENHAIN TNC 320
131
4.7 Système d'aide contextuelle TNCguide
Télécharger les fichiers d'aide actualisés
Vous trouverez les fichiers d'aide correspondants au logiciel de votre
TNC à la page d'accueil HEIDENHAIN www.heidenhain.fr sous :
U
U
U
U
U
U
U
Services et documentation
Logiciels
Système d'aideTNC 320
Numéro du logiciel CN de votre TNC, par exemple 34056x-02
Sélectionner la langue désirée, p. ex., le français : vous découvrez
alors un fichier ZIP comportant les fichiers d’aide adéquats
Télécharger le fichier ZIP et le décompresser
Transférer les fichiers CHM décompressés vers le répertoire
TNC:\tncguide\de de la TNC ou dans le sous-répertoire de la langue
correspondant (voir tableau suivant)
Si vous transférez les fichiers CHM vers la TNC en
utilisant TNCremoNT, vous devez inscrire l’extension .CHM
dans le sous-menu Fonctions
spéciales>Configuration>Mode>Transfert en format
binaire.
Langue
Répertoire TNC
Allemand
TNC:\tncguide\de
Anglais
TNC:\tncguide\en
Tchèque
TNC:\tncguide\cs
Français
TNC:\tncguide\fr
Italien
TNC:\tncguide\it
Espagnol
TNC:\tncguide\es
Portugais
TNC:\tncguide\pt
Suédois
TNC:\tncguide\sv
Danois
TNC:\tncguide\da
Finnois
TNC:\tncguide\fi
Néerlandais
TNC:\tncguide\nl
Polonais
TNC:\tncguide\pl
Hongrois
TNC:\tncguide\hu
Russe
TNC:\tncguide\ru
Chinois (simplifié)
TNC:\tncguide\zh
Chinois (traditionnel)
TNC:\tncguide\zh-tw
132
Programmation : aides à la programmation
Programmation : outils
5.1 Introduction des données d’outils
5.1 Introduction des données
d’outils
Avance F
L'avance F correspond à la vitesse en mm/min. (inch/min.) à laquelle
le centre de l'outil se déplace sur sa trajectoire. L'avance max. peut
être définie pour chaque axe séparément, par paramètre-machine.
Introduction
Vous pouvez programmer l'avance dans la séquence TOOL CALL (appel
d'outil) et dans chaque séquence de positionnement (voir „Créer des
séquences de programme avec les touches de contournage” à la page
164) Dans les programmes en millimètres, introduisez l'avance en
mm/min. et dans les programmes en pouces (à cause de la résolution),
en 1/10ème de pouce/min.
Z
S
S
Y
F
X
Avance rapide
Pour l'avance rapide, introduisez F MAX. Pour introduire F MAX et
répondre à la question de dialogue Avance F= ?, appuyez sur la touche
ENT ou sur la softkey FMAX.
Pour effectuer un déplacement avec l'avance rapide de
votre machine, vous pouvez aussi programmer la valeur
numérique correspondante, par ex. F30000.
Contrairement à FMAX, cette avance rapide est modale et
reste active jusqu'à ce que vous programmiez une
nouvelle avance.
Durée d’effet
L'avance programmée avec une valeur numérique reste active jusqu'à
la séquence où une nouvelle avance a été programmée. F MAX n'est
valable que pour la séquence dans laquelle elle a été programmée.
Après une séquence avec F MAX, l'avance active est la dernière
programmée avec une valeur numérique.
Modification en cours d'exécution du programme
Pendant l'exécution du programme, vous pouvez modifier l'avance à
l'aide du potentiomètre d'avance F.
134
Programmation : outils
5.1 Introduction des données d’outils
Vitesse de rotation broche S
Vous introduisez la vitesse de rotation broche S en tours par minute
(tours/min.) dans une séquence TOOL CALL (appel d’outil). En
alternative, vous pouvez aussi définir une vitesse de coupe Vc en
m/min.
Modification programmée
Dans le programme d'usinage, vous pouvez modifier la vitesse de
rotation broche dans une séquence TOOL CALL en n'introduisant que la
nouvelle vitesse de rotation broche :
U
Programmer l'appel d'outil : appuyer sur la touche
TOOL CALL
U
Sauter le dialogue Numéro d'outil? avec la touche NO
ENT
U
Sauter le dialogue Axe de broche parallèle X/Y/Z ?
avec la touche NO ENT
U
Dans le dialogueVitesse de rotation broche S= ?,
introduire la nouvelle vitesse de rotation et valider
avec la touche END, ou bien commuter avec la
softkey VC pour la vitesse de coupe
Modification en cours d'exécution du programme
Pendant l'exécution du programme, vous pouvez modifier la vitesse
de rotation de la broche à l'aide du potentiomètre de broche S.
HEIDENHAIN TNC 320
135
5.2 Données d'outils
5.2 Données d'outils
Conditions requises pour la correction d'outil
Habituellement, vous programmez les coordonnées des opérations de
contournage en utilisant les cotes du plan de la pièce. Pour que la TNC
calcule la trajectoire du centre de l'outil et soit donc en mesure
d'exécuter une correction d'outil, vous devez introduire la longueur et
le rayon de chaque outil utilisé.
Vous pouvez introduire les données d'outils soit directement dans le
programme à l'aide de la fonction TOOL DEF, soit séparément dans les
tableaux d'outils. Si vous introduisez les données d'outils dans les
tableaux, vous disposez alors d'autres informations relatives aux
outils. Lors de l'exécution du programme d'usinage, la TNC prend en
compte toutes les informations programmées.
1
8
12
Z
13
18
8
L
R
Numéro d'outil, nom d'outil
X
Chaque outil est identifié avec un numéro compris entre 0 et 32767.
Si vous travaillez avec les tableaux d’outils, vous pouvez en plus
donner des noms aux outils. Les noms d'outils peuvent avoir jusqu’à
16 caractères.
L’outil numéro 0 est défini comme outil zéro. Il a pour longueur L=0 et
pour rayon R=0. Dans le tableau d'outils, vous devez également définir
l'outil T0 avec L=0 et R=0.
Longueur d'outil L
Par principe, introduisez systématiquement la longueur d'outil L en
longueur absolue se référant au point de référence de l'outil. Pour de
nombreuses fonctions utilisées en liaison avec l'usinage multiaxes, la
TNC doit disposer impérativement de la longueur totale de l'outil.
Z
L3
Rayon d'outil R
Introduisez directement le rayon d’outil R.
L1
L2
X
136
Programmation : outils
5.2 Données d'outils
Valeurs Delta pour longueurs et rayons
Les valeurs Delta indiquent les écarts de longueur et de rayon des
outils.
Une valeur Delta positive correspond à une surépaisseur (DL, DR,
DR2>0). Pour usiner avec une surépaisseur, introduisez la valeur de
surépaisseur dans l'appel d'outil avec TOOL CALL.
R
Une valeur Delta négative correspond à une réduction d'épaisseur (DL,
DR, DR2<0). Une sous-épaisseur est introduite dans le tableau d'outils
dans le cas d'une usure d'outil.
Les valeurs Delta à introduire sont des valeurs numériques. Dans
une séquence TOOL CALL, vous pouvez également introduire un
paramètre Q.
Plage d’introduction : les valeurs Delta ne doivent pas excéder
±99,999 mm.
R
L
DR<0
DR>0
DL<0
DL>0
Les valeurs Delta issues du tableau d'outils influent sur la
représentation graphique de l'outil. La représentation de
la pièce lors de la simulation reste identique.
Les valeurs Delta issues de la séquence TOOL CALL
modifient, lors la simulation, la taille de la pièce
représentée. La taille de l'outil en simulation reste
identique.
Introduire les données d'outils dans le
programme
Pour un outil donné, vous définissez une seule fois dans une séquence
TOOL DEF le numéro, la longueur et le rayon :
U
Sélectionner la définition d'outil : appuyer sur la touche TOOL DEF
U Numéro d'outil : pour désigner l'outil sans ambiguïté
U
Longueur d'outil : valeur de correction de longueur
U
Rayon d'outil : valeur de correction de rayon
Pendant la dialogue, vous pouvez insérer directement la
valeur de longueur et de rayon dans le champ du dialogue
: appuyer sur la softkey de l'axe désiré.
Exemple
4 TOOL DEF 5 L+10 R+5
HEIDENHAIN TNC 320
137
5.2 Données d'outils
Introduire les données d'outils dans le tableau
Dans un tableau d'outils, vous pouvez définir jusqu'à 9999 outils et y
mémoriser leurs caractéristiques. Consultez également les fonctions
d'édition indiquées plus loin dans ce chapitre. Pour pouvoir introduire
plusieurs valeurs de correction pour un outil donné (indexation du
numéro d’outil), insérez une ligne et ajoutez une extension au
numéro de l’outil, à savoir un point et un chiffre de 1 à 9 (par
exemple : T 5.2).
Vous devez utiliser les tableaux d’outils lorsque
„ vous souhaitez utiliser des outils indexés, comme p. ex. des forets
étagés avec plusieurs corrections de longueur
„ votre machine est équipée d’un changeur d’outils automatique
„ vous souhaitez effectuer un évidement avec le cycle d'usinage 22
(voir Manuel d'utilisation des cycles, cycle EVIDEMENT)
„ vous souhaitez utiliser les cycles d'usinage 251 à 254 (voir Manuel
d'utilisation des cycles, cycles 251 à 254)
Si vous souhaitez créer ou gérer d'autres tableaux
d'outils, les noms de fichiers doivent commencer avec
une lettre.
Tableau d'outils : données d'outils standard
Abrév.
Données
Dialogue
T
Numéro avec lequel l'outil est appelé dans le programme (ex. 5,
indexation : 5.2)
-
NOM
Nom avec lequel l'outil est appelé dans le programme (16
caractères au maximum, majuscules seulement, aucun espace)
Nom d'outil?
L
Valeur de correction de longueur d’outil L
Longueur d'outil?
R
Valeur de correction du rayon d'outil R
Rayon d'outil R?
R2
Rayon d’outil R2 pour fraise torique (seulement correction rayon
tridimensionnelle ou représentation graphique de l’usinage avec
fraise torique)
Rayon d'outil R2?
DL
Valeur Delta pour longueur d'outil L
Surépaisseur pour long. d'outil?
DR
Valeur Delta du rayon d'outil R
Surépaisseur du rayon d'outil?
DR2
Valeur Delta du rayon d’outil R2
Surépaisseur du rayon d'outil R2?
LCUTS
Longueur du tranchant de l’outil pour le cycle 22
Longueur du tranchant dans l'axe
d'outil?
ANGLE
Angle max. de plongée de l’outil lors de la plongée pendulaire
avec les cycles 22 et 208
Angle max. de plongée?
TL
Bloquer l'outil (TL : de l'angl. Tool Locked = outil bloqué)
Outil bloqué?
Oui = ENT / Non = NO ENT
138
Programmation : outils
Données
Dialogue
RT
Numéro d'un outil jumeau – s'il existe – en tant qu'outil de
rechange (RT : de l'angl. Replacement Tool = outil de rechange);
voir aussi TIME2)
Outil jumeau?
TIME1
Durée d'utilisation max. de l'outil, en minutes. Cette fonction
dépend de la machine. Elle est décrite dans le manuel de la
machine
Durée d'utilisation max.?
TIME2
Durée d'utilisation max. de l'outil pour un TOOL CALL, en minutes :
si la durée d'utilisation actuelle atteint ou dépasse cette valeur, la
TNC installe l'outil jumeau lors du prochain TOOL CALL (voir
également CUR.TIME)
Durée d'outil. max. avec TOOL
CALL?
CUR_TIME
Durée d'utilisation courante de l'outil, en minutes : la TNC
comptabilise automatiquement la durée d'utilisation CUR.TIME (de
l'anglais CURrent TIME = durée actuelle/en cours). Pour les outils
usagés, vous pouvez attribuer une valeur par défaut
Durée d'utilisation actuelle?
TYPE
Type d'outil : Softkey SELECT. TYPE (3ème barre de softkeys) ; la
TNC ouvre une fenêtre où vous pouvez sélectionner le type de
l'outil. Vous pouvez attribuer des types d'outils pour configurer le
filtre d'affichage de manière à ce l'on ne voit dans le tableau que
le type sélectionné
Type d'outil ?
DOC
Commentaire sur l’outil (16 caractères max.)
Commentaire sur l'outil?
PLC
Information concernant cet outil, devant être transmise au PLC
Etat PLC?
PTYP
Type d'outil pour exploitation dans tableau d'emplacements
Type outil pour tableau
emplacements?
LIFTOFF
Pour définir si la TNC doit dégager l'outil lors d'un arrêt CN dans
le sens positif de l'axe d'outil afin d'éviter les traces de
dégagement sur le contour. Si vous avez défini Y, la TNC rétracte
l'outil du contour si cette fonction a été activée avec M148 dans
le programme CN (voir „Dégager automatiquement l'outil du
contour lors d'un stop CN : M148” à la page 321)
Relever l'outil Y/N ?
TP_NO
Renvoi au numéro du palpeur dans le tableau palpeurs
Numéro du palpeur
T_ANGLE
Angle de pointe de l'outil. Est utilisé par le cycle Centrage (cycle
240) pour pouvoir calculer la profondeur de centrage à partir de la
valeur introduite pour le diamètre
Angle de pointe?
LAST_USE
Date et heure, auxquelles la TNC a changé l'outil la dernière fois
avec TOOL CALL
LAST_USE
5.2 Données d'outils
Abrév.
Plage d’introduction : 16 caractères max, format défini en
interne : Date = JJJJ.MM.TT, Heure = hh.mm
HEIDENHAIN TNC 320
139
5.2 Données d'outils
Tableau d'outils : données d'outils pour l'étalonnage
automatique d'outils
Description des cycles pour l'étalonnage automatique
d'outils : voir Manuel d'utilisation des cycles
Abrév.
Données
Dialogue
CUT
Nombre de dents de l'outil (20 dents max.)
Nombre de dents?
LTOL
Ecart admissible par rapport à la longueur d'outil L pour la
détection d'usure. Si la valeur introduite est dépassée, la TNC
bloque l'outil (état L). Plage d'introduction : 0 à 0,9999 mm
Tolérance d'usure : Longueur?
RTOL
Ecart admissible par rapport au rayon d'outil R pour la détection
d'usure. Si la valeur introduite est dépassée, la TNC bloque l'outil
(état L). Plage d'introduction : 0 à 0,9999 mm
Tolérance d'usure : Rayon?
R2TOL
Ecart admissible par rapport au rayon d'outil R2 pour la détection
d'usure. Si la valeur introduite est dépassée, la TNC bloque l'outil
(état L). Plage d'introduction : 0 à 0,9999 mm
Tolérance d'usure : Rayon 2?
DIRECT.
Sens de coupe de l'outil pour l'étalonnage avec outil en rotation
Sens rotation palpage (M3 = –)?
R_OFFS
Etalonnage de la longueur : décalage de l'outil entre le centre de
la tige et le centre de l'outil. Configuration par défaut : aucune
valeur introduite (décalage = rayon de l'outil)
Décalage outil : Rayon?
L_OFFS
Etalonnage du rayon : décalage supplémentaire de l'outil pour
offsetToolAxis entre l'arête supérieure de la tige de palpage et
l'arête inférieure de l'outil. Valeur par défaut : 0
Décalage outil : Longueur?
LBREAK
Ecart admissible par rapport à la longueur d'outil L pour la
détection de rupture. Si la valeur introduite est dépassée, la TNC
bloque l'outil (état L). Plage d'introduction : 0 à 0,9999 mm
Tolérance de rupture : Longueur?
RBREAK
Ecart admissible par rapport au rayon d'outil R pour la détection
de rupture. Si la valeur introduite est dépassée, la TNC bloque
l'outil (état L). Plage d'introduction : 0 à 0,9999 mm
Tolérance de rupture : Rayon?
140
Programmation : outils
5.2 Données d'outils
Editer les tableaux d'outils
Le tableau d'outils qui sert à l'exécution du programme s'appelle
TOOL.T. TOOL.T doit être mémorisé dans le répertoire TNC:\table et
ne peut être édité que dans l'un des modes de fonctionnement
Machine.
Attribuez au choix un autre nom de fichier avec l’extension .T aux
tableaux d’outils que vous souhaitez archiver ou utiliser pour le test de
programme. Pour les modes de fonctionnement „Test de
programme“ et „Programmation“, la TNC utilise par défaut le tableau
d’outils „simtool.t“ également mémorisé dans le répertoire „table“.
Pour l'édition, appuyez sur la softkey TABLEAU D'OUTILS en mode
de fonctionnement Test de programme.
Ouvrir le tableau d’outils TOOL.T :
U
Sélectionner n'importe quel mode Machine
U Sélectionner le tableau d'outils : appuyer sur la softkey
TABLEAU D'OUTILS
U
Mettre la softkey EDITER sur „ON“
N'afficher que certains types d'outils (réglage de filtre)
U Appuyer sur la softkey FILTRE TABLEAUX (quatrième barre de
softkeys)
U Avec la softkey, sélectionner le type d'outil souhaité : la TNC
n'affiche que les outils du type sélectionné
U Supprimer le filtre : appuyer à nouveau sur le type d'outil sélectionné
auparavant ou sélectionner un autre type d'outil
Le constructeur de la machine adapte les fonctions de
filtrage à votre machine. Consultez le manuel de la
machine!
HEIDENHAIN TNC 320
141
5.2 Données d'outils
Ouvrir n’importe quel autre tableau d’outils
U Sélectionner le mode Mémorisation/édition de programme
U Appeler le gestionnaire de fichiers
U
Afficher le choix de types de fichiers : appuyer sur la
softkey SELECT. TYPE
U
Afficher les fichiers de type .T : appuyer sur la softkey
AFFICHE .T.
U
Sélectionner un fichier ou introduire un nouveau nom
de fichier. Validez avec la touche ENT ou avec la
softkey SELECT.
Si vous avez ouvert un tableau d'outils pour l'éditer, à l'aide des
touches fléchées ou des softkeys, vous pouvez déplacer la
surbrillance dans le tableau et à n'importe quelle position. A n'importe
quelle position, vous pouvez remplacer les valeurs mémorisées ou
introduire de nouvelles valeurs. Autres fonctions d'édition : voir
tableau suivant.
Lorsque la TNC ne peut pas afficher simultanément toutes les
positions du tableau d'outils, le curseur affiche en haut du tableau le
symbole „>>“ ou „<<“.
Fonctions d'édition pour tableaux d'outils
Softkey
Sélectionner le début du tableau
Sélectionner la fin du tableau
Sélectionner la page précédente du tableau
Sélectionner la page suivante du tableau
Rechercher un texte ou un nombre
Saut au début de la ligne
Saut en fin de ligne
Copier le champ en surbrillance
Insérer le champ copié
Ajouter le nombre de lignes possibles (outils) en
fin de tableau
Insérer une ligne avec introduction possible du
numéro d’outil
142
Programmation : outils
5.2 Données d'outils
Fonctions d'édition pour tableaux d'outils
Softkey
Effacer la ligne (outil) actuelle
Trier les outils en fonction du contenu d’'une
colonne que l'on peut choisir
Afficher tous les forets du tableau d’outils
Afficher toutes les fraises du tableau d'outils
Afficher tous les tarauds / toutes les fraises à
fileter du tableau d’outils
Afficher tous les palpeurs du tableau d’outils
Quitter le tableau d'outils
U Appeler le gestionnaire de fichiers et sélectionner un fichier d'un
autre type, p. ex. un programme d'usinage
HEIDENHAIN TNC 320
143
5.2 Données d'outils
Importer un tableau d'outils
Le constructeur de machine peut adapter la fonction
IMPORTER TABLEAU. Consultez le manuel de la
machine!
Si vous importez un tableau d'outils à partir d'une iTNC 530 et que
vous l'utilisez dans une TNC 320, vous devez adapter le format et le
contenu avant de pouvoir utiliser le tableau d'outil. Vous pouvez
adapter facilement le tableau d'outil avec la fonction IMPORTER
TABLEAUde la TNC 320. La TNC convertit le contenu du tableau
d'outils importé dans un format correct et mémorise une copie avec
le nom TOOL.T. Tenez compte de la procédure suivante :
U
U
U
U
U
U
U
Mémorisez le tableau d'outil de l'iTNC 530 dans le répertoire
TNC:\table
Sélectionnez le mode programmation
Sélectionner le gestionnaire de fichiers : appuyer sur la touche PGM
MGT
Déplacez la surbrillance sur tableau d'outils que vous souhaitez
importer
Appuyez sur la softkey FONCTIONS AUXILIAIRES.
Sélectionner la softkey IMPORTER TABLEAU
Ouvrez le tableau TOOL.T et vérifiez le contenu
Les caractères suivants sont permis dans la colonne Nom
du tableau d'outils :
„ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789#$&._“. Lors de l'importation, la TNC change la virgule par un
point dans le nom d'outils.
Lors de l'exécution de la fonction IMPORTER TABLEAU,
la TNC crée un tableau avec le nom TOOL.T. Si un fichier
portant le même nom existe, celui-ci est écrasé. Dans ce
cas, la TNC enregistre une copie de sauvegarde portant le
nom TOOL.t.bak. Avant d'importer un fichier, assurezvous d'avoir sauvegardé l'original de votre tableau
d'outils, afin d'éviter des pertes de données.
La copie les tableaux d'outils à l'aide du gestionnaire de
fichiers de la TNC est décrite au paragraphe „Gestionnaire
de fichiers“.
144
Programmation : outils
5.2 Données d'outils
Tableau d'emplacements pour changeur d'outils
Le constructeur de la machine adapte les fonctions du
tableau d'emplacements à votre machine. Consultez le
manuel de la machine!
Pour le changement automatique d'outil, vous avez besoin du tableau
d'emplacements TOOL_P.TCH. La TNC gère plusieurs tableaux
d'emplacements avec des noms de fichiers au choix. Pour activer le
tableau d'emplacements destiné à l'exécution du programme,
sélectionnez-le avec le gestionnaire de fichiers dans un mode
d'exécution de programme (état M).
Editer un tableau d'emplacements en mode Exécution de
programme
U Sélectionner le tableau d'outils : appuyer sur la softkey
TABLEAU D'OUTILS
U
Sélectionner le tableau d'emplacements : appuyer sur
la softkey TABLEAU EMPLACEMENTS
U
Mettre la softkey EDITER sur ON. Le cas échéant,
ceci peut s’avérer inutile ou impossible sur votre
machine : consultez le manuel de la machine
HEIDENHAIN TNC 320
145
5.2 Données d'outils
Sélectionner le tableau d'emplacements en mode
Mémorisation/Edition de programme
U Appeler le gestionnaire de fichiers
U
Afficher le choix de types de fichiers : appuyer sur la
softkey AFF. TOUS
U
Sélectionner un fichier ou introduire un nouveau nom
de fichier. Validez avec la touche ENT ou avec la
softkey SELECT.
Abrév.
Données
Dialogue
P
Numéro d’emplacement de l’outil dans le magasin
-
T
Numéro d'outil
Numéro d'outil?
RSV
Réservation d'emplacements pour magasin à plateau
Réserv.emplac.:
Oui=ENT/Non = NOENT
ST
L'outil est un outil spécial (ST : de l'angl. Special Tool = outil spécial) ; si
votre outil spécial occupe plusieurs places avant et après sa place, vous
devez bloquer l'emplacement correspondant dans la colonne L (état L)
Outil spécial?
F
Remettre l'outil toujours au même emplacement dans le magasin (F : de
l'angl. Fixed = fixe)
Emplac. défini? Oui = ENT
/ Non = NO ENT
L
Bloquer l'emplacement (L : de l'angl. Locked = bloqué, voir également
colonne ST)
Emplac. bloqué ? Oui =
ENT / Non = NO ENT
DOC
Affichage du commentaire sur l'outil à partir de TOOL.T
-
PLC
Information concernant cet emplacement d’outil et devant être transmise au
PLC
Etat PLC?
P1 ... P5
La fonction est définie par le constructeur de la machine. Consulter la
documentation de la machine
Valeur?
PTYP
Type d'outil La fonction est définie par le constructeur de la machine.
Consulter la documentation de la machine
Type outil pour tab.
emplacmts?
LOCKED_ABOVE
Magasin à plateau : bloquer l'emplacement supérieur
Bloquer l'emplacement
supérieur?
LOCKED_BELOW
Magasin à plateau : bloquer l'emplacement inférieur
Verrouiller emplacement
inférieur?
LOCKED_LEFT
Magasin à plateau : bloquer l'emplacement de gauche
Bloquer l'emplacement de
gauche?
LOCKED_RIGHT
Magasin à plateau : bloquer l'emplacement de droite
Bloquer l'emplacement de
droite?
146
Programmation : outils
5.2 Données d'outils
Fonctions d'édition pour tableaux
d'emplacements
Softkey
Sélectionner le début du tableau
Sélectionner la fin du tableau
Sélectionner la page précédente du tableau
Sélectionner la page suivante du tableau
Annuler le tableau d'emplacements
Annuler la colonne numéro d'outil T
Saut en début de la ligne
Saut en fin de ligne
Simuler le changement d’outil
Sélectionner l'outil dans le tableau d'outils : la
TNC affiche le contenu du tableau d'outils.
Sélectionner l'outil avec les touches fléchées, le
valider dans le tableau d'emplacements avec la
softkey OK
Editer le champ actuel
Trier les vues
Le constructeur de la machine définit les fonctions, les
propriétés et la désignation des différents filtres
d'affichage. Consultez le manuel de la machine!
HEIDENHAIN TNC 320
147
5.2 Données d'outils
Appeler les données d'outils
Vous programmez un appel d’outil TOOL CALL dans le programme
d’usinage avec les données suivantes :
U
Sélectionner l'appel d'outil avec la touche TOOL CALL
U Numéro d'outil : introduire le numéro ou le nom de
l'outil. Vous avez précédemment défini l'outil dans
une séquence TOOL DEF ou dans le tableau d'outils.
Avec la softkey NOM OUTIL, commuter vers
l'introduction du nom. La TNC met automatiquement
le nom d'outil entre guillemets. Les noms se réfèrent
à ce qui a été introduit dans le tableau d'outils actif
TOOL.T. Pour appeler un outil avec d'autres valeurs
de correction, introduisez l'index défini dans le
tableau d'outils derrière un point décimal. Avec la
softkey SELECT., vous pouvez ouvrir une boîte de
dialogue dans laquelle vous sélectionnez directement
(sans avoir à indiquer son numéro ou son nom) un
outil défini dans le tableau d'outils TOOL.T
148
U
Axe broche parallèle X/Y/Z : introduire l'axe d'outil
U
Vitesse de rotation broche S : Vitesse de broche en
tours par minute En alternative, vous pouvez définir
une vitesse de coupe Vc [m/min.]. Pour cela, appuyez
sur la softkey VC.
U
Avance F : l’avance [mm/min. ou 0,1 inch/min] est
active jusqu'à ce que vous programmiez une nouvelle
avance dans une séquence de positionnement ou
dans une séquence TOOL CALL
U
Surépaisseur de longueur d'outil DL : valeur Delta
de longueur d'outil
U
Surépaisseur du rayon d'outil DR : valeur Delta du
rayon d'outil
U
Surépaisseur du rayon d'outil DR2: valeur Delta du
rayon d'outil 2
Programmation : outils
5.2 Données d'outils
Exemple : appel d'outil
L'outil numéro 5 est appelé dans l'axe d’outil Z avec une vitesse de
rotation broche de 2500 tours/min et une avance de 350 mm/min. La
surépaisseur de longueur d'outil (DL) est de 0,2 mm, celle du rayon
d'outil 2 (DR2) est 0,05 mm, et la sous-épaisseur pour le rayon d'outil
(DR) de 1 mm.
20 TOOL CALL 5.2 Z S2500 F350 DL+0,2 DR-1 DR2+0,05
Le D devant L et R correspond à la valeur Delta.
Présélection dans les tableaux d’outils
Quand vous utilisez des tableaux d'outils, vous sélectionnez avec une
séquence TOOL DEF l'outil suivant qui doit être utilisé. Pour cela, vous
introduisez le numéro de l'outil, ou un paramètre Q, ou encore un nom
d'outil entre guillemets.
Changement d'outil
Le changement d'outil est une fonction dépendant de la
machine. Consultez le manuel de la machine!
Position de changement d’outil
La position de changement d'outil doit être abordée sans risque de
collision. A l'aide des fonctions auxiliaires M91 et M92, vous pouvez
aborder une position machine de changement d'outil. Si vous
programmez TOOL CALL 0 avant le premier appel d'outil, la TNC
déplace la broche dans son axe à une position indépendante de la
longueur d'outil.
Changement d’outil manuel
Avant un changement d’outil manuel, la broche est arrêtée, l’outil
amené à la position de changement d'outil:
U
U
U
U
Aborder de manière programmée la position de changement d’outil
Interrompre l'exécution du programme, Voir „Interrompre
l'usinage”, page 428
Changer l'outil
Poursuivre l'exécution du programme, Voir „Reprendre l’exécution
du programme après un arrêt d'usinage”, page 430
Changement d’outil automatique
Avec le changement automatique, l'exécution du programme n'est
pas interrompue. Lors d'un appel d'outil avec TOOL CALL la TNC
remplace l'outil par un autre outil du magasin d'outils.
HEIDENHAIN TNC 320
149
5.2 Données d'outils
Changement d'outil automatique lors du dépassement de la
durée d'utilisation : M101
M101 est une fonction dépendant de la machine. Consultez
le manuel de la machine!
Après une durée prédéterminée, la TNC peut remplacer l'outil par un
outil jumeau et poursuivre l'usinage avec ce dernier. Pour cela,
programmez la fonction auxiliaire M101. Vous pouvez annuler l'effet de
M101 avec M102.
Dans la colonne TIME2 du tableau d'outils, introduisez le temps
d'utilisation de l'outil après lequel l'usinage doit être poursuivi avec
une outil jumeau. Dans la colonne CUR_TIME, la TNC affiche le temps
d'utilisation courant de l'outil. Lorsque le temps d'utilisation courant
dépasse la valeur se trouvant dans la colonne TIME2, l'outil est
remplacé par l'outil jumeau au prochain emplacement possible du
programme, et ceci dans un délai d'une minute au maximum. Le
remplacement a lieu seulement après l'exécution de la séquence.
La TNC exécute le changement d'outil automatique aux
emplacements de programme adaptés. Le changement automatique
d'outils n'est pas exécuté :
„ pendant l'exécution des cycles d'usinage
„ lorsqu'une correction de rayon d'outil est active (RR/RL).
„ directement après une fonction d'approche APPR
„ directement avant une fonction de départ DEP
„ directement avant ou après CHF et RND
„ pendant l'exécution de macros
„ pendant l'exécution d'un changement d'outil
„ directement après TOOL CALL ou TOOL DEF
„ pendant l'exécution des cycles SL
Attention, danger pour la pièce et l'outil!
Mettre hors service le changement automatique d'outil
avec M102, lorsque vous travaillez avec des outils spéciaux
(p. ex. fraise-scies), car la TNC dégage l'outil toujours dans
le sens de l'axe d'outil.
150
Programmation : outils
5.2 Données d'outils
Le temps d'usinage qui dépend du programme CN peut être plus
important à cause de la vérification des temps morts ou du calcul du
changement d'outils automatique. A ce sujet, vous pouvez avoir une
influence avec l'élément d'introduction optionnel BT (Block Tolerance).
Lorsque vous introduisez la fonction M101, la TNC poursuit le dialogue
avec la question BT. Vous définissez alors le nombre de séquences CN
(1 - 100 ), qui permettent de retarder le changement d'outils
automatique. La durée qui en découle, avec laquelle le changement
d'outils est retardé, dépend du contenu des séquences CN (p. ex.
avance, déplacement). Si vous ne définissez pas BT, la TNC utilise la
valeur 1 ou une valeur standard définie par le constructeur de la
machine.
Plus vous augmentez la valeur BT, moins l'augmentation
de la durée d'usinage sera influencée par M101. Dans ce
cas, il faut noter que le changement d'outils automatique
aura lieu plus tard!
Si vous souhaitez remettre à zéro le temps d'utilisation
actuel , (p. ex. après le remplacement d'une plaquette), il
faut introduire la valeur 0 dans la colonne CUR_TIME .
La fonction M101 n'est pas disponible pour les outils
tournants ni dans le mode tournage.
Test d'utilisation des outils
La fonction de test d'utilisation d'outils doit être activée
par le constructeur de la machine. Consultez le manuel de
votre machine.
Le programme conversationnel à vérifier doit avoir été simulé
entièrement en mode Test de programme pour réaliser un test
d'utilisation d'outils.
Utiliser le Test d'utilisation des outils
En mode de fonctionnement Exécution de programme, et avec les
softkey UTILISATION OUTILS et TEST D'UTILISATION DES OUTILS,
vous pouvez vérifier, avant le start du programme, si les outils utilisés
sont disponibles et disposent d'une durée d'utilisation restante
suffisamment importante. La TNC compare les valeurs effectives de
durée d'utilisation du tableau d'outils avec les valeurs nominales du
fichier d'utilisation d'outils.
Lorsque vous appuyez sur la softkey TEST D'UTILISATION D'OUTILS,
la TNC affiche le résultat du test d'utilisation d'outils dans une fenêtre
auxiliaire. Fermer la fenêtre auxiliaire avec la touche ENT.
HEIDENHAIN TNC 320
151
5.2 Données d'outils
La TNC mémorise les durées d'utilisation d'outils dans un fichier
séparé portant l'extension pgmname.H.T.DEP. Le fichier d'utilisation
d'outils contient les informations suivantes :
Colonne
Signification
TOKEN
„ TOOL : durée d'utilisation d'outil pour chaque
TOOL CALL. Les enregistrements sont
classés par ordre chronologique
„ TTOTAL : durée d'utilisation totale d'un outil
„ STOTAL : appel d'un sous-programme ; les
enregistrements sont classés par ordre
chronologique
„ TIMETOTAL : la durée d'usinage totale du
programme CN est affichée dans la colonne
WTIME. Dans la colonne PATH, la TNC
enregistre le chemin d'accès au programme
CN concerné. La colonne TIME contient la
somme de toutes les lignes TIME (sans
déplacements en avance rapide). La TNC
met à 0 toutes les autres colonnes
„ TOOLFILE : dans la colonne PATH, la TNC
enregistre le chemin d'accès au tableau
d’outils que vous avez utilisé pour le test du
programme. Lors du test d’utilisation
d'outils, la TNC peut ainsi déterminer si
vous avez exécuté le test du programme
avec TOOL.T
TNR
Numéro d'outil (–1: aucun outil encore installé)
IDX
Indice d'outil
NAME
Nom d'outil issu du tableau d'outils
TIME
Durée d'utilisation de l'outil en secondes
(durée d'avance)
WTIME
Durée d'utilisation de l'outil en secondes
(durée d'utilisation totale de changement
d'outil à changement d'outil)
RAD
Rayon d'outil R + Surépaisseur rayon
d'outil DR issus du tableau d'outils. Unité:
[mm]
BLOCK
Numéro de séquence dans laquelle la
séquence TOOL CALL a été programmée
PATH
„ TOKEN = TOOL: chemin d'accès au
programme principal ou au sousprogramme
„ TOKEN = STOTAL : chemin d'accès au sousprogramme
T
152
Numéro d'outil avec indice d'outil
Programmation : outils
Signification
OVRMAX
Valeur maximale de l'override des avances
survenue pendant l'usinage. La TNC
enregistre ici la valeur 100 (%) lors du test de
programme
OVRMIN
Valeur minimale de l'override des avances
survenue pendant l'usinage. La TNC
enregistre ici la valeur -1 lors du test de
programme
NAMEPROG
„ 0 : le numéro d'outil est programmé
5.2 Données d'outils
Colonne
„ 1 : le nom d'outil est programmé
Deux possibilités sont disponibles pour le test d'utilisation des outils
d'un fichier de palettes :
„ Surbrillance sur un enregistrement de palette dans le fichier de
palettes :
La TNC exécute le test d'utilisation d'outils pour toute la palette
„ Surbrillance sur un enregistrement de programme dans le fichier de
palettes :
Die TNC n'exécute le test d'utilisation d'outils que pour le
programme sélectionné
HEIDENHAIN TNC 320
153
5.3 Correction d'outil
5.3 Correction d'outil
Introduction
La TNC corrige la trajectoire de l’outil en tenant compte de la valeur de
correction de la longueur d’outil dans l’axe de broche et du rayon
d’outil dans le plan d’usinage.
Si vous élaborez le programme d'usinage directement sur la TNC, la
correction du rayon d'outil n'est active que dans le plan d'usinage. La
TNC peut prendre en compte jusqu'à cinq axes, y compris les axes
rotatifs.
Correction de la longueur d'outil
La correction de longueur d'outil est active dès qu'un outil est appelé
et qu'un déplacement dans l'axe de broche est exécuté. Pour
l'annuler, appeler un outil de longueur L=0.
Attention, risque de collision!
Si vous annulez une correction de longueur positive avec
TOOL CALL 0, la distance entre l'outil et la pièce s'en trouve
réduite.
Après un appel d'outil TOOL CALL, le déplacement
programmé de l'outil dans l'axe de broche est modifié en
fonction de la différence de longueur entre l'ancien et le
nouvel outil.
Pour la correction de longueur, les valeurs Delta de la séquence TOOL
CALL et du tableau d'outils sont prises en compte.
Valeur de correction = L + DLTOOL CALL + DLTAB avec :
L:
DL TOOL CALL :
DL TAB :
154
Longueur d'outil L dans la séquence TOOL DEF ou
le tableau d'outils
Surépaisseur DL pour longueur dans séquence
TOOL CALL 0 (non prise en compte par l'affichage
de position)
Surépaisseur DL pour longueur issue du tableau
d'outils
Programmation : outils
5.3 Correction d'outil
Correction du rayon d'outil
La séquence de programme d'un déplacement d’outil contient :
„ RL ou RR pour une correction de rayon
„ R+ ou R-, pour une correction de rayon lors d'un déplacement
paraxial
„ R0 si aucune correction de rayon ne doit être exécutée
RL
R0
La correction de rayon devient active dès qu’un outil est appelé et
déplacé dans une séquence linéaire dans le plan d’usinage avec RL ou
RR.
R
La TNC annule la correction de rayon dans le cas où vous :
R
„ programmez une séquence linéaire avec R0
„ quittez le contour avec la fonction DEP
„ programmez un PGM CALL
„ sélectionnez un nouveau programme avec PGM MGT
Pour une correction de rayon, la TNC tient compte des valeurs Delta
issues aussi bien de la séquence TOOL CALL que du tableau d'outils :
Valeur de correction = R + DRTOOL CALL + DRTAB avec
R:
DR TOOL CALL :
DR TAB :
Rayon d'outil R issu de la séquence TOOL DEF ou
du tableau d'outils
Surépaisseur DR pour rayon issue de la séquence
TOOL CALL (non prise en compte par l'affichage de
position)
Surépaisseur DR pour rayon issue du tableau
d'outils
Contournages sans correction de rayon : R0
L'outil se déplace dans le plan d'usinage avec son centre situé soit sur
la trajectoire programmée ou sur les coordonnées programmées.
Application : perçage, pré-positionnement.
Y
Z
X
Y
X
HEIDENHAIN TNC 320
155
5.3 Correction d'outil
Contournages avec correction de rayon : RR et RL
RR
RL
L’outil se déplace à droite du contour dans le sens de
déplacement
L’outil se déplace à gauche du contour dans le sens de
déplacement
Y
La distance entre le centre de l'outil et le contour programmé
correspond à la valeur du rayon de l'outil. „Droite“ et „gauche“
désignent la position de l'outil dans le sens du déplacement le long du
contour de la pièce. voir figures.
RL
Entre deux séquences de programme dont la correction
de rayon RR et RL diffère, il doit y avoir au minimum une
séquence de déplacement dans le plan d'usinage sans
correction de rayon (par conséquent avec R0).
X
La TNC active une correction de rayon à la fin de la
séquence dans laquelle vous avez programmé la
correction pour la première fois.
Lors de la 1ère séquence avec correction de rayon RR/RL
et lors de l'annulation avec R0, la TNC positionne toujours
l'outil perpendiculairement au point initial ou au point final
programmé. Positionnez l'outil devant le premier point du
contour ou derrière le dernier point du contour de manière
à éviter que celui-ci ne soit endommagé.
Y
Introduction de la correction de rayon
RR
Introduisez la correction de rayon dans une séquence L. Introduisez
les coordonnées du point-cible et validez-les avec la touche ENT
CORR. RAYON : RL/RR/SANS CORR.:?
Déplacement d’outil à gauche du contour programmé
: appuyer sur la softkey RL ou
X
déplacement d’outil à droite du contour programmé :
appuyer sur la softkey RR ou
Déplacement d'outil sans correction de rayon ou
annuler la correction de rayon : appuyer sur la touche
ENT
Fermer la séquence : appuyer sur la touche END
156
Programmation : outils
5.3 Correction d'outil
Correction de rayon : usinage des angles
„ Angles saillants :
Si vous avez programmé une correction de rayon, la TNC guide
déplace l'outil aux angles externes sur un cercle de transition. Si
nécessaire, la TNC réduit l'avance au passage des angles externes,
par exemple lors d'importants changements de direction.
„ Angles rentrants :
Dans les angles rentrants, la TNC calcule le point d'intersection des
trajectoires sur lesquelles le centre de l'outil se déplace. En partant
de ce point, l'outil se déplace le long de l'élément de contour
suivant. Ainsi la pièce n'est pas endommagée dans les angles
rentrants. Par conséquent, le rayon d'outil ne peut pas avoir
n'importe quelle dimension pour un contour donné.
RL
Attention, risque de collision!
Pour l’usinage des angles rentrants, ne définissez pas le
point initial ou le point final à un sommet d'angle, car le
contour pourrait être endommagé.
RL
HEIDENHAIN TNC 320
RL
157
5.3 Correction d'outil
158
Programmation : outils
Programmation :
programmer les
contours
Fonctions de contournage
Le contour d'une pièce est habituellement constitué de plusieurs
éléments tels que droites et des arcs de cercles. Avec les fonctions
de contournage, vous programmez les trajectoires d'outils avec des
droites et des arcs de cercle.
L
CC
L
L
Programmation de contour libre FK (Option
logiciel Advanced programming features)
C
Si la cotation du plan n'est pas conforme à la programmation CN et
que les données sont incomplètes, vous pouvez programmer le
contour de la pièce en vous aidant de la programmation flexible de
contours. La TNC calcule les données manquantes.
La programmation FK vous permet également de programmer les
déplacements d'outils sur des droites et arcs de cercle.
Fonctions auxiliaires M
Les fonctions auxiliaires de la TNC commandent :
„ le déroulement du programme, en réalisant p. ex. une interruption
„ les fonctions de la machine, comme p. ex. la mise en/hors service
de la broche et de l’arrosage
„ le comportement de l'outil en contournage
Sous-programmes et répétitions de parties de
programme
Les séquences d'usinage qui se répètent ne sont à introduire qu'une
seule fois dans un sous-programme ou dans une répétition de partie
de programme. Quand une partie de programme ne doit être exécutée
que dans certaines conditions, il est également préférable d'inclure
ces séquences dans un sous programme. En plus, un programme
d'usinage peut en appeler un autre et l'exécuter.
Y
80
CC
60
R4
0
6.1 Déplacements d'outils
6.1 Déplacements d'outils
40
10
115
X
La programmation des sous-programmes et des répétitions de parties
de programme est décrite au chapitre 7.
Programmation avec paramètres Q
Dans le programme d'usinage, les paramètres Q remplacent des
valeurs numériques : une valeur numérique est attribuée à un
paramètre Q. Les paramètres Q permettent de programmer des
fonctions mathématiques destinées à gérer le déroulement du
programme ou à construire un contour.
A l’aide de la programmation paramétrée, vous pouvez exécuter des
mesures avec un système de palpage 3D pendant l'exécution du
programme.
La programmation à l'aide de paramètres Q est décrite au chapitre 8.
160
Programmation : programmer les contours
Programmer un déplacement d’outil pour un
usinage
Z
Quand vous créez un programme d'usinage, vous programmez
successivement les fonctions de contournage de chaque élément du
contour de la pièce. Pour cela, vous introduisez habituellement les
coordonnées des points finaux des éléments du contour du
dessin. A partir de ces coordonnées, des données d'outils et de la
correction de rayon, la TNC calcule la trajectoire réelle de l'outil.
Y
X
La TNC déplace simultanément tous les axes de la machine que vous
avez programmés dans la séquence de contournage.
100
Déplacements parallèles aux axes de la machine
La séquence de programme contient une seule coordonnée : la TNC
déplace l’outil parallèlement à l’axe machine programmé.
Selon la construction de votre machine, et lors de l'exécution, c'est
soit l'outil qui se déplace ou alors la table de la machine avec la pièce
fixée Partez toujours du principe que c'est l'outil qui se déplace lors de
la programmation d'un contournage.
Z
Exemple :
Y
50 L X+100
50
L
X+100
Numéro de séquence
Fonction de contournage „Droite“
Coordonnées du point final
X
50
L’outil conserve les coordonnées Y et Z et se déplace à la position
X=100. voir figure.
70
Déplacements dans les plans principaux
La séquence de programme contient deux indications de
coordonnées : la TNC déplace l'outil dans le plan programmé.
Exemple :
Z
L X+70 Y+50
L’outil conserve la coordonnée Z et se déplace dans le plan XY à la
position X=70, Y=50. voir figure
Y
X
Déplacement tridimensionnel
La séquence de programme contient 3 indications de coordonnées : la
TNC positionne l'outil dans l'espace jusqu'à la position programmée.
Exemple :
-10
80
L X+80 Y+0 Z-10
HEIDENHAIN TNC 320
161
6.2 Principes de base des fonctions de contournage
6.2 Principes de base des fonctions
de contournage
6.2 Principes de base des fonctions de contournage
Cercles et arcs de cercle
Pour les déplacements circulaires, la TNC déplace simultanément
deux axes de la machine : l'outil se déplace par rapport à la pièce sur
une trajectoire circulaire. Pour les déplacements circulaires, vous
pouvez introduire un centre de cercle CC.
Les fonctions de contournage des arcs de cercle permettent de
programmer des cercles dans les plans principaux : le plan principal
doit être défini dans l'appel d'outil TOOL CALL avec la définition de
l'axe de broche :
Axe de broche
Plan principal
Z
XY, également
UV, XV, UY
Y
ZX, également
WU, ZU, WX
X
YZ, également
VW, YW, VZ
Y
Y
YCC
X
CC
XCC
X
Des cercles dans des plans non parallèles au plan principal
sont programmés avec la fonction „Inclinaison du plan
d'usinage“ (voir Manuel d'utilisation des cycles, cycle 19
PLAN D'USINAGE), ou avec les paramètres Q (voir
„Principe et vue d’ensemble des fonctions”, page 230).
162
Programmation : programmer les contours
Rotation sens horaire : DRRotation sens anti-horaire : DR+
Correction de rayon
La correction de rayon doit être programmée dans la séquence qui
aborde le premier élément du contour. Une correction de rayon ne doit
pas être programmée dans une séquence de trajectoire circulaire.
Programmez la correction dans une séquence linéaire précédente (voir
„Contournages - Coordonnées cartésiennes”, page 173) ou dans une
séquence d'approche (séq. APPR, voir „Approche et sortie du
contour”, page 165).
Z
Y
DR+
DR–
CC
CC
X
Prépositionnement
Attention, risque de collision!
Au début d’un programme d’usinage, prépositionnez
l’outil pour éviter que l’outil et la pièce ne soient
endommagés.
HEIDENHAIN TNC 320
163
6.2 Principes de base des fonctions de contournage
Sens de rotation DR lors de déplacements circulaires
Pour les déplacements circulaires sans raccordement tangentiel à
d'autres éléments du contour, introduisez le sens de rotation de la
manière suivante :
6.2 Principes de base des fonctions de contournage
Créer des séquences de programme avec les touches de
contournage
Vous ouvrez le dialogue Texte clair avec les touches de fonction de
contournage grises. La TNC réclame toutes les informations les unes
après les autres et ajoute la séquence dans le programme d’usinage.
Exemple – Programmation d'une droite.
Ouvrir le dialogue de programmation : p.ex. Droite
COORDONNÉES?
Introduire les coordonnées du point final de la
droite, p.ex. -20 en X
COORDONNÉES?
Introduire les coordonnées du point final de la droite,
p.ex. 30 en Y, valider avec la touche ENT
CORR. RAYON : RL/RR/SANS CORR.?
Sélectionner la correction de rayon : p.ex., appuyer
sur la softkey R0, l'outil se déplace sans correction
AVANCE F=? / F MAX = ENT
100
Introduire l'avance, valider avec ENT : p.ex. 100
mm/min. Avec la programmation INCH : l'introduction
de 100 correspond à une avance de 10 pouces/min.
Se déplacer en rapide : appuyer sur la softkey FMAX,
ou
Déplacer l'outil à l'avance définie dans la séquence
TOOL CALL : appuyer sur la softkey FAUTO
FONCTION AUXILIAIRE M?
3
Introduire la fonction auxiliaire, p.ex. M3 et fermer le
dialogue avec la touche ENT
Ligne dans le programme d'usinage
L X-20 Y+30 R0 FMAX M3
164
Programmation : programmer les contours
6.3 Approche et sortie du contour
6.3 Approche et sortie du contour
Récapitulatif : formes de trajectoires pour
accoster et quitter le contour
Les fonctions APPR (en anglais approach = approche) et DEP (en
anglais departure = départ) sont activées avec la touche APPR/DEP.
Les formes de contour suivantes peuvent être sélectionnées par
softkeys :
Fonction
Approche
Sortie
Droite avec raccordement tangentiel
Droite perpendiculaire au point du
contour
Trajectoire circulaire avec
raccordement tangentiel
Trajectoire circulaire avec
raccordement tangentiel au contour,
approche et sortie vers un point
auxiliaire à l'extérieur du contour, sur un
segment de droite avec raccordement
tangentiel
Accoster et quitter sur une trajectoire hélicoïdale
En accostant et en quittant sur une trajectoire hélicoïdale (hélice),
l'outil se déplace dans le prolongement de l'hélice et se raccorde ainsi
au contour avec une trajectoire circulaire tangentielle. Pour cela,
utilisez la fonction APPR CT ou DEP CT.
HEIDENHAIN TNC 320
165
6.3 Approche et sortie du contour
Positions importantes en approche et en sortie
„ Point initial PS
Programmez cette position immédiatement avant la séquence
APPR. Ps est situé à l'extérieur du contour et est accosté sans
correction de rayon (R0).
„ Point auxiliaire PH
Avec certaines formes de trajectoires, l'approche et la sortie du
contour passent par un point auxiliaire PH que la TNC calcule à partir
des données contenues dans les séquences APPR et DEP. La TNC
déplace l'outil de la position actuelle au point auxiliaire PH avec la
dernière avance programmée. Si vous avez programmé FMAX
(avance rapide) dans la dernière séquence de positionnement avant
la fonction d'approche, la TNC accoste également le point auxiliaire
PH en avance rapide
„ Premier point du contour PA et dernier point du contour PE
Programmez le premier point du contour PA dans la séquence APPR
et le dernier point du contour PE avec n'importe quelle fonction de
contournage. Si la séquence APPR contient aussi la coordonnée Z,
la TNC déplace l'outil d'abord dans le plan d'usinage jusqu'à PH, puis
dans l'axe d'outil à la profondeur programmée.
„ Point final PN
La position PN est située hors du contour et dépend des données de
la séquence DEP. Si DEP contient également la coordonnée Z, la
TNC déplace l'outil tout d'abord dans le plan d'usinage jusqu'à PH,
puis dans l'axe d'outil à la hauteur programmée.
Abréviation
Signification
APPR
angl. APPRoach = approche
DEP
angl. DEParture = départ
L
angl. Line = droite
C
angl. Circle = cercle
T
tangentiel (transition lisse, continue)
N
normale (perpendiculaire)
RL
RL
PN R0
PA RL
PE RL
PH RL
PS R0
Lors du déplacement de la position courante au point
auxiliaire PH, la TNC ne contrôle pas si le contour peut être
endommagé. Vérifiez-le avec le test graphique!
Avec les fonctions APPR LT, APPR LN et APPR CT, la TNC
déplace l'outil de la position initiale au point auxiliaire PH
avec la dernière avance/avance rapide programmée. Avec
APPR LCT, la TNC déplace l'outil du point auxiliaire PH
avec l'avance programmée dans la séquence APPR. Si
aucune avance n'a été programmée avant la séquence
d'approche, la TNC délivre un message d'erreur.
166
Programmation : programmer les contours
6.3 Approche et sortie du contour
Coordonnées polaires
Vous pouvez aussi programmer en coordonnées polaires les points du
contour pour les fonctions d'approche et de sortie :
„ APPR LT devient APPR PLT
„ APPR LN devient APPR PLN
„ APPR CT devient APPR PCT
„ APPR LCT devient APPR PLCT
„ DEP LCT devient DEP PLCT
Pour cela, appuyez sur la touche orange P après avoir sélectionné par
softkey une fonction de déplacement d'approche ou de sortie.
Correction de rayon
Programmez la correction de rayon dans la même séquence que le
premier point du contour PA dans la séquence APPR. Les séquences
DEP annulent automatiquement la correction de rayon!
Approche sans correction de rayon : si vous programmez R0 dans la
séquence APPR, la TNC déplace l'outil comme un outil de rayon R = 0
mm avec une correction de rayon RR! Ainsi, avec les fonctions
APPR/DEP LN et APPR/DEP CT est définie la direction dans laquelle la
TNC entre sur le contour et sort de celui-ci. Vous devez également
programmer les deux coordonnées du plan d'usinage dans la
séquence de déplacement qui suit la séquence APPR
HEIDENHAIN TNC 320
167
U
U
Fonction de contournage quelconque : aborder le point initial PS.
Ouvrir le dialogue avec la touche APPR/DEP et la softkey APPR LT :
U Coordonnées du premier point du contour PA
U
LEN : distance entre le point auxiliaire PH et le premier
point du contour PA
U
Correction de rayon RR/RL pour l'usinage
Y
15
La TNC guide l'outil sur une droite allant du point initial PS jusqu'à un
point auxiliaire PH. De cette position, l'outil aborde le premier point du
contour PA sur une droite tangentielle. Le point auxiliaire PH est à une
distance LEN du premier point du contour PA.
35
20
10
RR
6.3 Approche et sortie du contour
Approche sur une droite avec raccordement
tangentiel : APPR LT
PA
RR
PH
PS
R0
RR
20
35
40
X
Exemple de séquences CN
7 L X+40 Y+10 R0 FMAX M3
Aborder PS sans correction de rayon
8 APPR LT X+20 Y+20 Z-10 LEN15 RR F100
PA avec correction de rayon RR, distance PH à PA :
LEN=15
9 L X+35 Y+35
Point final du premier élément du contour
10 L ...
Elément de contour suivant
Approche sur une droite perpendiculaire au
premier point du contour : APPR LN
U
U
Fonction de contournage quelconque : aborder le point initial PS.
Ouvrir le dialogue avec la touche APPR/DEP et la softkey APPR LN :
U Coordonnées du premier point du contour PA
U
Longueur : distance au point auxiliaire PH. Introduire
LEN toujours en positif!
U
Correction de rayon RR/RL pour l'usinage
Y
RR
La TNC guide l'outil sur une droite allant du point initial PS jusqu'à un
point auxiliaire PH. De cette position, l'outil aborde le premier point du
contour PA sur une droite perpendiculaire. Le point auxiliaire PH est à
une distance LEN + rayon d'outil du premier point du contour PA.
35
20
PA
RR
15
10
PH
PS
R0
RR
10
20
40
X
Exemple de séquences CN
7 L X+40 Y+10 R0 FMAX M3
Aborder PS sans correction de rayon
8 APPR LN X+10 Y+20 Z-10 LEN15 RR F100
PA avec correction de rayon RR
9 L X+20 Y+35
Point final du premier élément du contour
10 L ...
Elément de contour suivant
168
Programmation : programmer les contours
35
20
La trajectoire circulaire de PH à PA est définie par le rayon R et l'angle
au centre CCA. Le sens de rotation de la trajectoire circulaire est
donné par le sens d'usinage du premier élément du contour.
10
U
U
Fonction de contournage quelconque : aborder le point initial PS.
Ouvrir le dialogue avec la touche APPR/DEP et la softkey APPR CT :
U Coordonnées du premier point du contour PA
U
Rayon R de la trajectoire circulaire
RR
La TNC guide l'outil sur une droite allant du point initial PS jusqu'à un
point auxiliaire PH. De cette position, il aborde le premier point du
contour PA en suivant une trajectoire circulaire tangent au premier
élément du contour.
Y
PA
RR
CCA=
180°
0
R1
PH
10
PS
R0
20
40
X
„ Approche du côté de la correction de rayon :
introduire R en positif
„ Approche du côté opposé à la correction de rayon :
Introduire R en négatif
U
Angle au centre CCA de la trajectoire circulaire
„ CCA doit toujours être introduit avec le signe positif
„ Valeur d’introduction max. 360°
U
Correction de rayon RR/RL pour l'usinage
Exemple de séquences CN
7 L X+40 Y+10 R0 FMAX M3
Aborder PS sans correction de rayon
8 APPR CT X+10 Y+20 Z-10 CCA180 R+10 RR F100
PA avec correction de rayon RR, rayon R=10
9 L X+20 Y+35
Point final du premier élément du contour
10 L ...
Elément de contour suivant
HEIDENHAIN TNC 320
169
6.3 Approche et sortie du contour
Approche avec une trajectoire circulaire avec
raccordement tangentiel : APPR CT
La TNC guide l'outil sur une droite allant du point initial PS jusqu'à un
point auxiliaire PH. De cette position, l'outil aborde le premier point du
contour PA sur une trajectoire circulaire. L'avance programmée dans
la séquence APPR est la même sur tout le déplacement de la
séquence d'approche (trajectoire PS – PA).
Si vous avez programmé dans la séquence d'approche les trois
coordonnées des axes principaux X, Y et Z, la TNC effectue un
déplacement simultané sur les trois axes de la position définie avant
la séquence APPR au point auxiliaire PH, puis un déplacement dans le
plan de PH à PA.
La trajectoire circulaire se raccorde tangentiellement à la droite PS – PH
ainsi qu'au premier élément du contour. Ainsi elle est définie
clairement par le rayon R.
U
U
35
Y
RR
6.3 Approche et sortie du contour
Approche avec une trajectoire circulaire,
raccordement tangentiel au contour et segment
de droite : APPR LCT
20
PA
RR
0
R1
10
PH
PS
R0
RR
10
20
40
X
Fonction de contournage quelconque : aborder le point initial PS.
Ouvrir le dialogue avec la touche APPR/DEP et la softkey APPR
LCT :
U Coordonnées du premier point du contour PA
U
Rayon R de la trajectoire circulaire. Introduire R en
positif
U
Correction de rayon RR/RL pour l'usinage
Exemple de séquences CN
7 L X+40 Y+10 R0 FMAX M3
Aborder PS sans correction de rayon
8 APPR LCT X+10 Y+20 Z-10 R10 RR F100
PA avec correction de rayon RR, rayon R=10
9 L X+20 Y+35
Point final du premier élément du contour
10 L ...
Elément de contour suivant
170
Programmation : programmer les contours
Y
RR
La TNC déplace l'outil sur une droite allant du dernier point du contour
PE jusqu'au point final PN. La droite est dans le prolongement du
dernier élément du contour. PN est situé à distance LEN de PE.
U
Programmer le dernier élément du contour avec le point final PE et
la correction de rayon
Ouvrir le dialogue avec la touche APPR/DEP et la softkey DEP LT :
U LEN : Introduire la distance entre le point final PN et le
dernier élément du contour PE.
20
PE
RR
12.5
U
PN
R0
X
Exemple de séquences CN
23 L Y+20 RR F100
Dernier élément contour : PE avec correction rayon
24 DEP LT LEN12.5 F100
S'éloigner du contour de LEN=12,5 mm
25 L Z+100 FMAX M2
Dégagement en Z, retour, fin du programme
Sortir du contour avec une droite
perpendiculaire au dernier élément du contour :
DEP LN
La TNC déplace l'outil sur une droite allant du dernier point du contour
PE jusqu'au point final PN. La droite est perpendiculaire au dernier
élément du contour.au point PE Les points PN et PE sont distants de la
valeur LEN + rayon d'outil.
U
U
Programmer le dernier élément du contour avec le point final PE et
la correction de rayon
Ouvrir le dialogue avec la touche APPR/DEP et la softkey DEP LN :
U LEN : introduire la distance par rapport au point final
PN
Important : introduire LEN en positif!
Y
RR
PN
20
R0
PE
20
RR
X
Exemple de séquences CN
23 L Y+20 RR F100
Dernier élément contour : PE avec correction rayon
24 DEP LN LEN+20 F100
S’éloigner perpendiculairement du contour de LEN =
20 mm
25 L Z+100 FMAX M2
Dégagement en Z, retour, fin du programme
HEIDENHAIN TNC 320
171
6.3 Approche et sortie du contour
Sortie du contour par une droite avec
raccordement tangentiel : DEP LT
Y
RR
La TNC déplace l'outil sur une trajectoire circulaire allant du dernier
point du contour PE jusqu'au point final PN. La trajectoire circulaire se
raccorde par tangentement au dernier élément du contour.
U
U
Programmer le dernier élément du contour avec le point final PE et
la correction de rayon
Ouvrir le dialogue avec la touche APPR/DEP et la softkey DEP CT :
U
Angle au centre CCA de la trajectoire circulaire
U
Rayon R de la trajectoire circulaire
PN
R0
20
R8
PE
180°
RR
„ L'outil doit quitter la pièce du côté de la correction
de rayon : introduire R avec son signe positif
„ L'outil doit quitter la pièce du côté opposé à la
correction de rayon : introduire R en négatif
X
Exemple de séquences CN
23 L Y+20 RR F100
Dernier élément contour : PE avec correction rayon
24 DEP CT CCA 180 R+8 F100
Angle au centre=180°,
Rayon de la trajectoire circulaire=8 mm
25 L Z+100 FMAX M2
Dégagement en Z, retour, fin du programme
Sortie avec une trajectoire circulaire,
raccordement tangentiel au contour et
segment de droite : DEP LCT
La TNC déplace l'outil sur une trajectoire circulaire allant du dernier
point du contour PE jusqu'à un point auxiliaire PH. De cette position, il
se déplace sur une droite jusqu'au point final PN. Le dernier élément
du contour et la droite PH – PN se raccordent à la trajectoire circulaire
par tangentement. Ainsi, la trajectoire circulaire est définie clairement
par le rayon R.
U
U
Y
RR
20
R8
6.3 Approche et sortie du contour
Sortie du contour avec une trajectoire circulaire
et raccordement tangentiel : DEP CT
12
PN
Programmer le dernier élément du contour avec le point final PE et
la correction de rayon
Ouvrir le dialogue avec la touche APPR/DEP et la softkey DEP LCT :
U
Introduire les coordonnées du point final PN
U
Rayon R de la trajectoire circulaire. Introduire R en
positif!
R0
PE
RR
PH
R0
10
X
Exemple de séquences CN
23 L Y+20 RR F100
Dernier élément contour : PE avec correction rayon
24 DEP LCT X+10 Y+12 R+8 F100
Coordonnées PN, rayon trajectoire circulaire=8 mm
25 L Z+100 FMAX M2
Dégagement en Z, retour, fin du programme
172
Programmation : programmer les contours
Vue d’ensemble des fonctions de contournage
Fonction
Touche de
contournage
Déplacement d'outil
Données nécessaires
Page
Droite L
angl. : Line
Droite
Coordonnées du point final
de la droite
Page 174
Chanfrein : CHF
angl. : CHamFer
Chanfrein entre deux droites Longueur du chanfrein
Page 175
Centre de cercle CC ;
angl. : Circle Center
Aucun
Coordonnées du centre du
cercle ou du pôle
Page 177
Arc de cercle C
angl. : Circle
Trajectoire circulaire au point
final de l'arc de cercle avec
centre de cercle CC
Coordonnées du point final
du cercle, sens de rotation
Page 178
Arc de cercle CR
angl. : Circle by Radius
Trajectoire circulaire avec
rayon défini
Coordonnées du point final
du cercle, rayon, sens de
rotation
Page 179
Arc de cercle CT
angl. : Circle Tangential
Trajectoire circulaire avec
raccordement tangentiel à
l'élément de contour
précédent et suivant
Coordonnées du point final
du cercle
Page 181
Arrondi d'angle RND
angl. : RouNDing of
Corner
Trajectoire circulaire avec
raccordement tangentiel à
l'élément de contour
précédent et suivant
Rayon d’angle R
Page 176
Programmation flexible
de contours FK
Droite ou trajectoire
circulaire avec raccordement
quelconque à l'élément de
contour précédent
voir „Programmation de
contour libre FK (Option
logiciel Advanced
programming features)”,
page 194
Page 197
HEIDENHAIN TNC 320
173
6.4 Contournages - Coordonnées cartésiennes
6.4 Contournages - Coordonnées
cartésiennes
La TNC déplace l'outil sur une droite allant de sa position actuelle
jusqu'au point final de la droite. Le point de départ correspond au point
final de la séquence précédente.
Coordonnées du point final de la droite, si nécessaire
U
Correction de rayon RL/RR/R0
U
Avance F
U
Fonction auxiliaire M
40
15
U
Y
10
6.4 Contournages - Coordonnées cartésiennes
Droite L
Exemple de séquences CN
7 L X+10 Y+40 RL F200 M3
8 L IX+20 IY-15
10
X
20
60
9 L X+60 IY-10
Transférer la position courante
Vous pouvez aussi générer une séquence linéaire (L) avec la touche
„TRANSFÉRER LA POSITION EFFECTIVE“ :
U
U
U
Déplacez l'outil en mode Manuel jusqu'à la position qui doit être
transférée
Commutez l'affichage de l'écran sur Mémorisation/édition de
programme
Sélectionner la séquence de programme derrière laquelle doit être
insérée la séquence L
U Appuyer sur la touche „TRANSFÉRER LA POSITION
EFFECTIVE“ : la TNC génère une séquence L ayant
les coordonnées de la position effective
174
Programmation : programmer les contours
6.4 Contournages - Coordonnées cartésiennes
Insérer un chanfrein entre deux droites
U
Longueur chanfrein : longueur du chanfrein, si
nécessaire :
U
Avance F (n'agit que dans la séquence CHF)
Exemple de séquences CN
Y
30
12
5
„ Dans les séquences linéaires qui précédent et suivent la séquence
CHF, programmez les deux coordonnées du plan dans lequel le
chanfrein doit être exécuté
„ La correction de rayon doit être identique avant et après la séquence
CHF
„ Le chanfrein doit pouvoir être usiné avec l’outil actuel
12
Les angles de contour formés par l'intersection de deux droites
peuvent être chanfreinés.
5
X
40
7 L X+0 Y+30 RL F300 M3
8 L X+40 IY+5
9 CHF 12 F250
10 L IX+5 Y+0
Un contour ne doit pas démarrer avec une séquence CHF.
Un chanfrein ne peut être exécuté que dans le plan
d’usinage.
Le point d'intersection nécessaire au chanfrein ne fait pas
partie du contour.
Une avance programmée dans la séquence CHF n'agit
que dans cette séquence. Après l'usinage du chanfrein,
l'avance avant la séquence CHF redevient active.
HEIDENHAIN TNC 320
175
6.4 Contournages - Coordonnées cartésiennes
Arrondi d'angle RND
La fonction RND permet d'arrondir les angles d'un contour.
Y
L’outil se déplace sur une trajectoire circulaire tangente à la fois à
l’élément de contour précédent et à l’élément de contour suivant.
Le cercle d’arrondi doit pouvoir être exécuté avec l’outil en cours
d’utilisation.
U
U
40
Rayon d'arrondi : rayon de l'arc de cercle, si
nécessaire :
R5
25
Avance F (n'agit que dans la séquence RND)
Exemple de séquences CN
5
5 L X+10 Y+40 RL F300 M3
6 L X+40 Y+25
10
40
X
7 RND R5 F100
8 L X+10 Y+5
L'élément de contour précédent et le suivant doivent
contenir les deux coordonnées du plan dans lequel doit
être exécuté l'arrondi d'angle. Si vous usinez le contour
sans correction de rayon, vous devez alors programmer
les deux coordonnées du plan d'usinage.
Le point d'intersection ne fait pas partie du contour.
Une avance programmée dans la séquence RND n'agit que
dans la séquence RND. Ensuite, l'avance avant la séquence
RND redevient active.
Une séquence RND peut être également utilisée pour une
approche douce du contour.
176
Programmation : programmer les contours
Vous définissez le centre du cercle des trajectoires circulaires que
vous programmez avec la touche C (trajectoire circulaire C) Pour cela :
„ introduisez les coordonnées cartésiennes du centre du cercle dans
le plan d'usinage ou
„ validez la dernière position programmée ou
„ transférer les coordonnées avec la touche „TRANSFERT DE LA
POSITION EFFECTIVE“
U
Introduire les coordonnées du centre du cercle ou
pour valider la dernière position programmée,
introduire : aucune coordonnée
Exemple de séquences CN
5 CC X+25 Y+25
Y
Z
CC
YCC
X
X CC
ou
10 L X+25 Y+25
11 CC
Les lignes 10 et 11 du programme ne se réfèrent pas à la figure cicontre.
Durée de l’effet
Le centre du cercle reste défini jusqu'à ce que vous programmiez un
nouveau centre de cercle. Vous pouvez également définir un centre de
cercle pour les axes auxiliaires U, V et W.
Introduire le centre de cercle en incrémental
Une coordonnée en incrémental du centre du cercle se réfère toujours
à la dernière position d'outil programmée.
Avec CC, vous désignez une position de centre de cercle
: l'outil ne se déplace pas à cette position.
Le centre du cercle sert également de pôle pour les
coordonnées polaires.
HEIDENHAIN TNC 320
177
6.4 Contournages - Coordonnées cartésiennes
Centre de cercle CCI
6.4 Contournages - Coordonnées cartésiennes
Trajectoire circulaire C et centre de cercle CC
Définissez le centre de cercle CC avant de programmer la trajectoire
circulaire. La dernière position programmée avant la trajectoire
circulaire correspond au point de départ de la trajectoire circulaire.
U
Y
Déplacer l’outil sur le point de départ de la trajectoire circulaire
U Introduire les coordonnées du centre de cercle
U
Introduire les coordonnées du point final de l'arc de
cercle, si nécessaire :
U
Sens de rotation DR
U
Avance F
U
Fonction auxiliaire M
E
S
CC
X
La TNC exécute normalement les déplacements
circulaires dans le plan d'usinage actif. Quand vous
programmez des cercles qui ne sont pas situés dans le
plan d'usinage actif, p. ex. C Z... X... DR+ avec l'axe
d'outil Z et simultanément une rotation du système de
coordonnée, alors la TNC décrit un cercle dans l'espace,
soit un cercle dans trois axes.
Exemple de séquences CN
Y
5 CC X+25 Y+25
6 L X+45 Y+25 RR F200 M3
DR+
7 C X+45 Y+25 DR+
Cercle entier
25
CC
Pour le point final, programmez les mêmes coordonnées que celles du
point de départ.
Le point de départ et le point final du déplacement
circulaire doivent être sur la trajectoire circulaire.
DR–
25
45
X
Tolérance d'introduction : jusqu'à 0.016 mm (réglable
avec le paramètre machine circleDeviation
Plus petit cercle réalisable par la TNC : 0.0016 µm.
178
Programmation : programmer les contours
6.4 Contournages - Coordonnées cartésiennes
Trajectoire circulaire CR de rayon défini
L'outil se déplace sur une trajectoire circulaire de rayon R.
U
Coordonnées du point final de l'arc de cercle
U
Rayon R
Attention : le signe définit la dimension de l'arc de
cercle!
U
Sens de rotation DR
Attention : le signe définit la forme concave ou
convexe!
U
Fonction auxiliaire M
U
Avance F
Cercle entier
Pour un cercle entier, programmez à la suite deux séquences
circulaires :
Y
R
E1=S
CC
S1=E
X
Le point final du premier demi-cercle correspond au point de départ du
second. Le point final du second demi-cercle correspond au point de
départ du premier.
HEIDENHAIN TNC 320
179
6.4 Contournages - Coordonnées cartésiennes
Angle au centre CCA et rayon R de l'arc de cercle
Quatre arcs de cercle passent par un point initial et un point final situés
sur un contour circulaire de même rayon :
Y
Petit arc de cercle : CCA<180°
Rayon avec signe positif R>0
1
DR–
Grand arc de cercle : CCA>180°
Rayon avec signe négatif R<0
Au moyen du sens de rotation, vous définissez si la forme de l’arc de
cercle est dirigée vers l’extérieur (convexe) ou vers l’intérieur
(concave) :
40
R
DR+
ZW
R
2
Convexe : Sens de rotation DR– (avec correction de rayon RL)
Concave : sens de rotation DR+ (avec correction de rayon RL)
Exemple de séquences CN
40
70
X
10 L X+40 Y+40 RL F200 M3
11 CR X+70 Y+40 R+20 DR- (ARC 1)
3
Y
ou
DR–
ZW
11 CR X+70 Y+40 R+20 DR+ (ARC 2)
R
ou
R
40
11 CR X+70 Y+40 R-20 DR- (ARC 3)
4
ou
11 CR X+70 Y+40 R-20 DR+ (ARC 4)
La distance entre le point de départ et le point final du
diamètre du cercle ne doit pas être supérieure au
diamètre du cercle.
DR+
40
70
X
Le rayon max. est 99,9999 m.
Les axes angulaires A, B et C sont acceptés.
180
Programmation : programmer les contours
L'outil se déplace sur un arc de cercle tangent à l'élément de contour
programmé précédemment.
Y
Un raccordement est "tangentiel" si aucune discontinuité ni angle vif
n'existent au point de contact des éléments, ceux-ci s'enchaînant
d'une manière continue.
Programmez directement avant la séquence CT l'élément de contour
auquel se raccorde l'arc de cercle tangent. Pour cela, au moins deux
séquences de positionnement sont nécessaires
U
Coordonnées du point final de l'arc de cercle, si
nécessaire :
U
Avance F
U
Fonction auxiliaire M
Exemple de séquences CN
30
25
20
25
45
X
7 L X+0 Y+25 RL F300 M3
8 L X+25 Y+30
9 CT X+45 Y+20
10 L Y+0
La séquence CT ainsi que l'élément de ce contour
précédent doivent contenir les deux coordonnées du plan
dans lequel l’arc de cercle doit être exécuté!
HEIDENHAIN TNC 320
181
6.4 Contournages - Coordonnées cartésiennes
Trajectoire circulaire CT avec raccordement
tangentiel
Y
10
3
95
10
2
4
1
5
20
20
6.4 Contournages - Coordonnées cartésiennes
Exemple : déplacement linéaire et chanfreins en coordonnées cartésiennes
X
9
5
0 BEGIN PGM LINEAIRE MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
Définition de la pièce brute pour simulation graphique de l’usinage
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S4000
Appel d’outil avec axe de broche et vitesse de rotation broche
4 L Z+250 R0 FMAX
Dégager l’outil dans l’axe de broche en avance rapide FMAX
5 L X-10 Y-10 R0 FMAX
Prépositionner l’outil
6 L Z-5 R0 F1000 M3
Aller à la profondeur d’usinage avec avance F = 1000 mm/min.
7 APPR LT X+5 Y+5 LEN10 RL F300
Aborder le contour au point 1 sur une droite avec
raccordement tangentiel
8 L Y+95
Aborder le point 2
9 L X+95
Point 3 : première droite du coin 3
10 CHF 10
Programmer un chanfrein de longueur 10 mm
11 L Y+5
Point 4 : deuxième droite du coin 3, première droite du coin 4
12 CHF 20
Programmer un chanfrein de longueur 20 mm
13 L X+5
Aborder le dernier point 1 du contour, deuxième droite du coin 4
14 DEP LT LEN10 F1000
Quitter le contour sur une droite avec raccordement tangentiel
15 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
16 END PGM LINEAIRE MM
182
Programmation : programmer les contours
Y
95
2
3
4
5
0
R10
R3
85
6
40
1
5
5
7
30 40
70
95
X
0 BEGIN PGM CIRCULAIR MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
Définition de la pièce brute pour simulation graphique de l’usinage
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S4000
Appel d’outil avec axe de broche et vitesse de rotation broche
4 L Z+250 R0 FMAX
Dégager l’outil dans l’axe de broche en avance rapide FMAX
5 L X-10 Y-10 R0 FMAX
Prépositionner l’outil
6 L Z-5 R0 F1000 M3
Aller à la profondeur d’usinage avec avance F = 1000 mm/min.
7 APPR LCT X+5 Y+5 R5 RL F300
Aborder le contour au point 1 sur une trajectoire circulaire avec
raccordement tangentiel
8 L X+5 Y+85
Point 2 : première droite au point 2
9 RND R10 F150
Insérer un rayon R = 10 mm, avance : 150 mm/min.
10 L X+30 Y+85
Aborder le point 3 : point initial du cercle avec CR
11 CR X+70 Y+95 R+30 DR-
Aborder le point 4 : point final du cercle avec CR, rayon 30 mm
12 L X+95
Aller au point 5
13 L X+95 Y+40
Aller au point 6
14 CT X+40 Y+5
Aller au point 7: point final du cercle, arc de cercle avec
raccordement tangentiel au point 6, la TNC calcule automatiquement
le rayon
HEIDENHAIN TNC 320
183
6.4 Contournages - Coordonnées cartésiennes
Exemple : déplacement circulaire en coordonnées cartésiennes
6.4 Contournages - Coordonnées cartésiennes
15 L X+5
Aller au dernier point du contour 1
16 DEP LCT X-20 Y-20 R5 F1000
Quitter le contour sur trajectoire circulaire avec raccord. tangentiel
17 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
18 END PGM CIRCULAIR MM
184
Programmation : programmer les contours
6.4 Contournages - Coordonnées cartésiennes
Exemple : cercle entier en coordonnées cartésiennes
Y
50
CC
50
X
0 BEGIN PGM C-CC MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S3150
Appel de l'outil
4 CC X+50 Y+50
Définir le centre du cercle
5 L Z+250 R0 FMAX
Dégager l'outil
6 L X-40 Y+50 R0 FMAX
Prépositionner l’outil
7 L Z-5 R0 F1000 M3
Aller à la profondeur d’usinage
8 APPR LCT X+0 Y+50 R5 RL F300
Aborder le point initial en suivant une trajectoire circulaire avec
raccordement tangentiel
9 C X+0 DR-
Aborder le point final (=point initial du cercle)
10 DEP LCT X-40 Y+50 R5 F1000
Quitter le contour sur trajectoire circulaire avec raccord. tangentiel
11 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
12 END PGM C-CC MM
HEIDENHAIN TNC 320
185
6.5 Contournages – Coordonnées polaires
6.5 Contournages – Coordonnées
polaires
Vue d'ensemble
Les coordonnées polaires vous permettent de définir une position par
un angle PA et une distance PR par rapport à un pôle CC défini
précédemment.
L'utilisation des coordonnées polaires est intéressante pour :
„ les positions sur des arcs de cercle
„ les plans avec données angulaires (ex. cercles de trous)
Vue d'ensemble des fonctions de contournages avec
coordonnées polaires
Fonction
Touche de
contournage
Déplacement d'outil
Données nécessaires
Page
Droite LP
+
Droite
Rayon polaire, angle polaire
du point final de la droite
Page 187
Arc de cercle CP
+
Trajectoire circulaire et
centre de cercle/pôle vers le
point final de l'arc de cercle
Angle polaire du point final du
cercle, sens de rotation
Page 188
Arc de cercle CTP
+
Trajectoire circulaire avec
raccordement tangentiel à
l'élément de contour
précédent
Rayon polaire, angle polaire
du point final du cercle
Page 189
Trajectoire
hélicoïdale (hélice)
+
Superposition d'une
trajectoire circulaire et d'une
droite
Rayon polaire, angle polaire
du point final du cercle,
coordonnée du point final
dans l'axe d’outil
Page 190
186
Programmation : programmer les contours
6.5 Contournages – Coordonnées polaires
Origine des coordonnées polaires : pôle CC
Avant d'indiquer les positions en coordonnées polaires, vous pouvez
définir le pôle CC à n'importe quel endroit du programme d'usinage.
Pour définir le pôle, procédez de la même manière que pour la
programmation du centre de cercle.
U
Y
Coordonnées: pour le pôle, introduire les coordonnées
cartésiennes ou introduire aucune coordonnée pour
valider la dernière position programmée. Définir le
pôle avant de programmer les coordonnées polaires.
Ne programmer le pôle qu'en coordonnées
cartésiennes. Le pôle reste actif jusqu'à ce que vous
programmiez un nouveau pôle.
YCC
CC
Exemple de séquences CN
X
12 CC X+45 Y+25
XCC
Droite LP
L'outil se déplace sur une droite allant de sa position actuelle jusqu'au
point final de la droite. Le point de départ correspond au point final de
la séquence précédente.
Rayon polaire PR: Introduire la distance entre le point
final de la droite et le pôle CC
U
Angle polaire PA : position angulaire du point final de
la droite comprise entre –360° et +360°
Le signe de PA est déterminé par rapport à l'axe de référence angulaire
:
30
U
Y
60°
25
CC
„ Angle compris entre l'axe de référence angulaire et PR, sens antihoraire : PA>0
„ Angle entre l'axe de réf. angulaire et PR, sens horaire : PA<0
Exemple de séquences CN
60°
45
X
12 CC X+45 Y+25
13 LP PR+30 PA+0 RR F300 M3
14 LP PA+60
15 LP IPA+60
16 LP PA+180
HEIDENHAIN TNC 320
187
6.5 Contournages – Coordonnées polaires
Trajectoire circulaire CP avec pôle CC
Le rayon des coordonnées polaires PR est en même temps le rayon de
l'arc de cercle. PR est défini par la distance séparant le point initial du
pôle CC. La dernière position d'outil programmée avant la trajectoire
circulaire correspond au point de départ de la trajectoire circulaire.
U
U
Y
Angle polaire PA : position angulaire du point final de
la trajectoire circulaire comprise entre –99999,9999°
et +99999,9999°
Sens de rotation DR
0
25
R2
CC
Exemple de séquences CN
18 CC X+25 Y+25
19 LP PR+20 PA+0 RR F250 M3
20 CP PA+180 DR+
25
X
En coordonnées incrémentales, introduire le même signe
pour DR et PA.
188
Programmation : programmer les contours
L'outil se déplace sur une trajectoire circulaire tangente à un élément
de contour précédent.
U
Angle des coordonnées polaires PA : position
angulaire du point final de la trajectoire circulaire
Y
120°
5
Rayon des coordonnées polaires PR : distance entre
le point final de la trajectoire circulaire et le pôle CC
0
R3
30°
R2
U
Exemple de séquences CN
12 CC X+40 Y+35
35
CC
13 L X+0 Y+35 RL F250 M3
14 LP PR+25 PA+120
15 CTP PR+30 PA+30
16 L Y+0
40
X
Le pôle n’est pas le centre du cercle!
HEIDENHAIN TNC 320
189
6.5 Contournages – Coordonnées polaires
Trajectoire circulaire CTP avec raccordement
tangentiel
6.5 Contournages – Coordonnées polaires
Trajectoire hélicoïdale (hélice)
Une trajectoire hélicoïdale est la superposition d'une trajectoire
circulaire et d'un déplacement linéaire qui lui est perpendiculaire. Vous
programmez la trajectoire circulaire dans un plan principal.
Vous ne pouvez programmer les contournages pour la trajectoire
hélicoïdale qu’en coordonnées polaires.
Application
„ Filetage intérieur et extérieur de grands diamètres
„ Rainures de graissage
Z
Y
CC
X
Calcul de la trajectoire hélicoïdale
Pour programmer, il vous faut disposer de la donnée incrémentale de
l’angle total parcouru par l’outil sur la trajectoire hélicoïdale ainsi que
de la hauteur totale de la trajectoire hélicoïdale.
Pour le calcul dans le sens du fraisage, de bas en haut, on a :
Nb de filets n
Longueur du filetage + dépassement en
début et fin de filetage
Hauteur totale h
Pas du filet P x nombre de filets n
Angle total
Nombre de filets x 360° + angle pour
incrémental IPA
début du filet + angle pour dépassement du
filet
Coordonnée initiale Z Pas du filet P x n rotations + (dépassement
en début de filet)
Forme de la trajectoire hélicoïdale
Le tableau indique la relation entre la direction de l’usinage, sens de
rotation et correction de rayon pour certaines formes de trajectoires.
Filetage
intérieur
Direction
d'usinage
Sens de
rotation
Correction
rayon
à droite
à gauche
Z+
Z+
DR+
DR–
RL
RR
à droite
à gauche
Z–
Z–
DR–
DR+
RR
RL
à droite
à gauche
Z+
Z+
DR+
DR–
RR
RL
à droite
à gauche
Z–
Z–
DR–
DR+
RL
RR
Filetage
extérieur
190
Programmation : programmer les contours
Introduisez le sens de rotation et l'angle total incrémental
IPA avec le même signe; dans le cas contraire, l'outil
pourrait se déplacer sur une trajectoire incorrecte.
Y
CC
270°
U
Angle polaire : introduire l'angle total parcouru par
l'outil sur la trajectoire hélicoïdale. Après avoir
introduit l'angle, sélectionnez l'axe d'outil à l'aide
d'une touche de sélection d'axe.
U
Introduire en incrémental la coordonnée de la hauteur
de la trajectoire hélicoïdale
U
Sens de rotation DR
Trajectoire hélicoïdale sens horaire : DR–
Trajectoire hélicoïdale sens anti-horaire : DR+
U
Introduire la correction de rayon en fonction du
tableau
R3
5
Pour l'angle total IPA, une valeur comprise entre
-99 999,9999° et +99 999,9999° est possible.
Z
X
25
40
Exemple de séquences CN : filetage M6 x 1 mm avec 5 filets
12 CC X+40 Y+25
13 L Z+0 F100 M3
14 LP PR+3 PA+270 RL F50
15 CP IPA-1800 IZ+5 DR-
HEIDENHAIN TNC 320
191
6.5 Contournages – Coordonnées polaires
Programmer une trajectoire hélicoïdale
Y
100
3
5
2
60°
R4
6.5 Contournages – Coordonnées polaires
Exemple : déplacement linéaire en coordonnées polaires
CC
1
50
6
4
5
5
5
50
100
X
0 BEGIN PGM LINAIRPO MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S4000
Appel de l'outil
4 CC X+50 Y+50
Définir le point d'origine des coordonnées polaires
5 L Z+250 R0 FMAX
Dégager l'outil
6 LP PR+60 PA+180 R0 FMAX
Prépositionner l’outil
7 L Z-5 R0 F1000 M3
Aller à la profondeur d’usinage
8 APPR PLCT PR+45 PA+180 R5 RL F250
Aborder le contour au point 1 suivant un cercle avec
raccordement tangentiel
9 LP PA+120
Aller au point 2
10 LP PA+60
Aller au point 3
11 LP PA+0
Aller au point 4
12 LP PA-60
Aller au point 5
13 LP PA-120
Aller au point 6
14 LP PA+180
Aller au point 1
15 DEP PLCT PR+60 PA+180 R5 F1000
Quitter le contour sur un cercle avec raccordement tangentiel
16 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
17 END PGM LINAIRPO MM
192
Programmation : programmer les contours
6.5 Contournages – Coordonnées polaires
Exemple : trajectoire hélicoïdale
Y
50
CC
50
M64 x 1,5
100
100
X
0 BEGIN PGM HELICE MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S1400
Appel de l'outil
4 L Z+250 R0 FMAX
Dégager l'outil
5 L X+50 Y+50 R0 FMAX
Prépositionner l’outil
6 CC
Valider comme pôle la dernière position programmée
7 L Z-12,75 R0 F1000 M3
Aller à la profondeur d’usinage
8 APPR PCT PR+32 PA-182 CCA180 R+2 RL F100
Aborder le contour sur un cercle avec raccordement tangentiel
9 CP IPA+3240 IZ+13.5 DR+ F200
Exécuter l'hélice
10 DEP CT CCA180 R+2
Quitter le contour sur un cercle avec raccordement tangentiel
11 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
12 END PGM HELICE MM
HEIDENHAIN TNC 320
193
Principes de base
Les plans de pièces dont la cotation n’est pas orientée CN contiennent
souvent des données non exploitables avec les touches de dialogue
grises. Par exemple :
R2
.5
28
Y
X
R4
45°
21
Vous programmez ces données directement avec la programmation
flexible de contours FK. La TNC calcule le contour à partir des données
connues et assiste la programmation avec le graphique interactif FK.
La figure en haut à droite montre une cotation que vous pouvez
introduire très simplement en programmation FK.
88.15°
18
„ des coordonnées connues peuvent être sur le contour même ou à
proximité de celui-ci,
„ des données peuvent se rapporter à un autre élément ou
„ des indications de sens et des données décrivent le cheminement
du contour.
¬36
¬
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
6.6 Programmation de contour
libre FK (Option logiciel
Advanced programming
features)
20
194
10 5 0
Programmation : programmer les contours
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Tenez compte des conditions suivantes pour la
programmation FK
Avec la programmation FK, vous ne pouvez introduire des
éléments du contour que dans le plan d’usinage. Vous
définissez le plan d'usinage dans la première séquence
BLK FORM du programme.
Toutes les données connues de chaque élément du
contour doivent être introduites. Programmez également
dans chaque séquence les données qui ne changent pas :
les données non programmées sont considérées comme
étant inconnues!
Les paramètres Q sont autorisés dans tous les éléments
FK, excepté dans les éléments relatifs (ex. RX ou RAN),
c'est à dire dans des éléments qui se réfèrent à d'autres
séquences CN.
Dans un programme, quand les programmations
conventionnelles et FK sont mélangées, chaque séquence
FK doit être définie clairement.
La TNC a besoin d'un point fixe à partir duquel les calculs
seront effectués. Avec les touches de dialogue grises,
programmez directement avant un bloc FK une position
contenant les deux coordonnées du plan d’usinage. Ne
pas programmer de paramètre Q dans cette séquence.
Quand la première séquence d'un bloc FK est une
séquence FCT ou FLT, vous devez programmer avant celleci au moins deux séquences avec les touches de dialogue
grises afin de définir clairement le sens de démarrage.
Un bloc FK ne doit pas être situé directement derrière un
repère LBL.
HEIDENHAIN TNC 320
195
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Graphique de programmation FK
Pour pouvoir utiliser le graphique avec la programmation
FK, sélectionnez le partage d'écran PGM + GRAPHISME
(voir „Mémorisation/Edition de programme” à la page 63)
Le contour d’une pièce n’est pas clairement défini quand les données
des coordonnées sont incomplètes. Dans ce cas, la TNC affiche à
l’aide du graphique FK les différentes solutions parmi lesquelles vous
devez choisir. Le graphique FK représente le contour de la pièce en
plusieurs couleurs :
bleu
vert
rouge
L’élément de contour est clairement défini
Les données introduites donnent plusieurs solutions ;
sélectionnez la bonne
Les données introduites ne suffisent pas encore pour
définir l’élément de contour ; introduisez d’autres
données
Lorsque les données donnent lieu à plusieurs solutions et que
l'élément de contour est en vert, sélectionnez le contour correct de la
manière suivante :
U
Appuyer sur la softkey AFFICHER SOLUTION jusqu'à
ce que l'élément de contour soit affiché
correctement. Utilisez la fonction zoom (2ème barre
de softkeys) quand vous ne pouvez pas distinguer les
différentes solutions les unes des autres.
U
L'élément de contour affiché est le bon : le choisir
avec la softkey SELECTION SOLUTION
Quand vous ne souhaitez pas choisir tout de suite un contour affiché
en vert; appuyez sur la softkey ACHEVER SELECTION pour poursuivre
le dialogue FK.
Il est souhaitable de choisir aussi rapidement que possible
avec SELECTION SOLUTION les éléments de contour en
vert afin de réduire le nombre de solutions pour les
éléments suivants.
Le constructeur de votre machine peut choisir d’autres
couleurs pour le graphique FK.
Les séquences CN d’un programme appelé avec PGM
CALL sont affichées par la TNC dans une autre couleur.
Afficher les numéros de séquence dans la fenêtre graphique
Pour afficher les numéros de séquence dans la fenêtre graphique :
U
196
Régler la softkey AFFICHER OMETTRE NO SÉQU. sur
AFFICHER (barre de softkeys 3)
Programmation : programmer les contours
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Ouvrir le dialogue FK
Lorsque vous appuyez sur la touche grise de fonction de contournage
FK, la TNC affiche des softkeys pour ouvrir le dialogue FK : voir tableau
suivant. Pour quitter les softkeys, appuyez à nouveau sur la touche FK.
Quand vous ouvrez le dialogue FK avec l’une de ces softkeys, la TNC
affiche d’autres barres de softkeys à l’aide desquelles vous introduisez
des coordonnées connues, des indications de sens et des données
relatives à la forme du contour.
Elément FK
Softkey
Droite avec raccordement tangentiel
Droite sans raccordement tangentiel
Arc de cercle avec raccordement tangentiel
Arc de cercle sans raccordement tangentiel
Pôle pour programmation FK
HEIDENHAIN TNC 320
197
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Pôle pour programmation FK
U
Afficher les softkeys de programmation flexible de
contour : appuyer sur la touche FK
U
Ouvrir le dialogue de définition du pôle : appuyer sur la
softkey FPOL. La TNC affiche les softkeys des axes
du plan d'usinage actif
U
Avec ces softkeys, introduire les coordonnées du pôle
Le pôle reste actif pour la programmation FK jusqu'à la
définition d'un nouveau pôle avec FPOL.
Droites FK
Droite sans raccordement tangentiel
U Afficher les softkeys de programmation flexible de
contour : appuyer sur la touche FK
U
Ouvrir le dialogue pour une droite FK : appuyer sur la
softkey FL. La TNC affiche d'autres softkeys
U
A l'aide de ces softkeys, introduire dans la séquence
toutes les données connues. Le graphique FK affiche
le contour programmé en rouge jusqu’à ce que les
données suffisent. Plusieurs solutions sont affichées
en vert (voir „Graphique de programmation FK”, page
196)
Droite avec raccordement tangentiel
Quand la droite se raccorde tangentiellement à un autre élément du
contour, ouvrez le dialogue avec la softkey FLT :
198
U
Afficher les softkeys de programmation flexible de
contour : appuyer sur la touche FK
U
Ouvrir le dialogue : appuyer sur la softkey FLT.
U
A l'aide des softkeys, introduire dans la séquence
toutes les données connues
Programmation : programmer les contours
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Trajectoires circulaires FK
Trajectoire circulaire sans raccordement tangentiel
U Afficher les softkeys de programmation flexible de
contour : appuyer sur la touche FK
U
Ouvrir le dialogue pour un arc de cercle FK : appuyer
sur la softkey FC ; la TNC affiche les softkeys pour les
indications relatives à la trajectoire circulaire ou au
centre de cercle
U
Avec ces softkeys, introduire dans la séquence toutes
les données connues : le graphique FK affiche le
contour programmé en rouge jusqu'à ce que les
données suffisent. Plusieurs solutions sont affichées
en vert (voir „Graphique de programmation FK”, page
196)
Trajectoire circulaire avec raccordement tangentiel
Quand la trajectoire circulaire se raccorde tangentiellement à un autre
élément du contour, ouvrez le dialogue avec la softkey FCT :
U
Afficher les softkeys de programmation flexible de
contour : appuyer sur la touche FK
U
Ouvrir le dialogue : appuyer sur la softkey FCT
U
A l'aide des softkeys, introduire dans la séquence
toutes les données connues
HEIDENHAIN TNC 320
199
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Possibilités d'introduction
Coordonnées du point final
Données connues
Softkeys
Y
Coordonnées cartésiennes X et Y
Coordonnées polaires se référant à
FPOL
R15
30
30°
20
Exemple de séquences CN
7 FPOL X+20 Y+30
8 FL IX+10 Y+20 RR F100
9 FCT PR+15 IPA+30 DR+ R15
20
200
10
X
Programmation : programmer les contours
Données connues
Softkeys
Longueur de la droite
Y
Pente de la droite
IAN
AN
Longueur de corde LEN de l'arc de cercle
LEN
0°
Pente en entrée AN de la tangente
Angle au centre de l'arc de cercle
X
Attention, danger pour la pièce et l'outil!
Exemple de séquences CN
10
.5
12
35°
15
28 FC DR+ R6 LEN 10 AN-45
29 FCT DR- R15 LEN 15
45°
25
HEIDENHAIN TNC 320
5
R1
27 FLT X+25 LEN 12.5 AN+35 RL F200
Y
R6
La pente en entrée introduite en incrémental (IAN); se
réfère à la direction de la dernière séquence de
déplacement. Les programmes incluant des pentes en
entrée incrémentales et créés sur des iTNC 530 ou des
TNC's plus anciennes ne sont pas compatibles.
X
201
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Direction et longueur des éléments du contour
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Centre de cercle CC, rayon et sens de rotation dans la séquence
FC/FCT
Pour des trajectoires circulaires programmées en mode FK, la TNC
calcule un centre de cercle à partir des données que vous avez
introduites. Avec la programmation FK, vous pouvez aussi
programmer un cercle entier dans une séquence.
Y
Si vous désirez définir le centre de cercle en coordonnées polaires,
vous devez définir le pôle avec la fonction FPOL au lieu de CC. FPOL
reste actif jusqu'à la prochaine séquence contenant FPOL et est défini
en coordonnées cartésiennes.
Un centre de cercle défini de manière conventionnelle ou
calculé par la TNC n’est plus actif comme pôle ou centre
de cercle dans un nouveau bloc FK : si des coordonnées
polaires programmées définies de manière
conventionnelle se réfèrent à un pôle défini
précédemment dans une séquence CC, reprogrammez
ce pôle dans une séquence CC après le bloc FK.
Données connues
5
R3
15
FPOL
CC
40°
X
20
Softkeys
Centre en coordonnées cartésiennes
Centre en coordonnées polaires
Sens de rotation de la trajectoire circulaire
Rayon de la trajectoire circulaire
Exemple de séquences CN
10 FC CCX+20 CCY+15 DR+ R15
11 FPOL X+20 Y+15
12 FL AN+40
13 FC DR+ R15 CCPR+35 CCPA+40
202
Programmation : programmer les contours
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Contours fermés
A l'aide de la softkey CLSD, vous marquez le début et la fin d'un
contour fermé. Ceci permet de réduire le nombre de solutions
possibles pour le dernier élément du contour.
Y
Introduisez CLSD en complément d'une autre donnée de contour
dans la première et la dernière séquence d'un bloc FK.
Début du contour :
Fin du contour :
CLSD+
CLSD–
CLSD+
Exemple de séquences CN
12 L X+5 Y+35 RL F500 M3
13 FC DR- R15 CLSD+ CCX+20 CCY+35
...
CLSD–
X
17 FCT DR- R+15 CLSD-
HEIDENHAIN TNC 320
203
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Points auxiliaires
Vous pouvez introduire les coordonnées de points auxiliaires sur le
contour ou en dehors de celui-ci, aussi bien pour les droites FK que
pour les trajectoires circulaires FK.
Points auxiliaires sur un contour
Les points auxiliaires sont situés directement sur la droite ou sur le
prolongement de celle-ci ou bien encore directement sur la trajectoire
circulaire.
Données connues
Softkeys
Y
60.071
53
Coordonnée X point auxiliaire
P1 ou P2 d'une droite
R10
70°
Coordonnée Y point auxiliaire
P1 ou P2 d'une droite
Coordonnée X point auxiliaire
P1, P2 ou P3 d'une trajectoire
circulaire
50
42.929
Coordonnée Y point auxiliaire
P1, P2 ou P3 d'une trajectoire
circulaire
X
Points auxiliaires en dehors d'un contour
Données connues
Softkeys
Coordonnée X et Y d'un point auxiliaire en
dehors d'une droite
Distance entre point auxiliaire et droite
Coordonnée X et Y d'un point auxiliaire en
dehors d'une trajectoire circulaire
Distance entre point auxiliaire et trajectoire
circulaire
Exemple de séquences CN
13 FC DR- R10 P1X+42.929 P1Y+60.071
14 FLT AN-70 PDX+50 PDY+53 D10
204
Programmation : programmer les contours
Les rapports relatifs sont des données qui se réfèrent à un autre
élément de contour. Les softkeys et mots de programme destinés aux
rapports Relatifs commencent par un „R“. La figure de droite montre
les données que vous devez programmer comme rapports relatifs.
Y
20
L’élément de contour dont vous indiquez le nr. de
séquence ne doit pas être à plus de 64 séquences avant
la séquence de programmation du rapport.
Si vous effacez une séquence à laquelle vous vous êtes
référée, la TNC délivre un message d’erreur. Modifiez le
programme avant d’effacer cette séquence.
20
45°
20°
10
R20
Introduire toujours en incrémentales les coordonnées
avec rapport relatif. Vous devez en plus indiquer le
numéro de la séquence de l’élément de contour auquel
vous vous référez.
90°
FPOL
10
35
X
Rapport relatif à la séquence N : coordonnées du point final
Données connues
Softkeys
Coordonnées cartésiennes
se référant à la séquence N
Coordonnées polaires se référant à la
séquence N
Exemple de séquences CN
12 FPOL X+10 Y+10
13 FL PR+20 PA+20
14 FL AN+45
15 FCT IX+20 DR- R20 CCA+90 RX 13
16 FL IPR+35 PA+0 RPR 13
HEIDENHAIN TNC 320
205
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Rapports relatifs
Données connues
Softkey
Y
Angle entre droite et autre élément de contour ou
entre la tangente en entrée sur l'arc de cercle et un
autre élément du contour
Droite parallèle à un autre élément de contour
220°
20
Distance entre droite et élément de contour parallèle
95°
12.5
105°
Exemple de séquences CN
12.5
17 FL LEN 20 AN+15
15°
X
20
18 FL AN+105 LEN 12.5
19 FL PAR 17 DP 12.5
20 FSELECT 2
21 FL LEN 20 IAN+95
22 FL IAN+220 RAN 18
Rapport relatif à la séquence N : centre de cercle CC
Données connues
Softkeys
Y
Coordonnées cartésiennes du centre de
cercle se référant à la séquence N
Coordonnées polaires du centre de
cercle se référant à la séquence N
20
35
R10
Exemple de séquences CN
12 FL X+10 Y+10 RL
15
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Rapport relatif à la séquence N : direction et distance de l'élément
de contour
CC
10
13 FL ...
14 FL X+18 Y+35
15 FL ...
10
18
X
16 FL ...
17 FC DR- R10 CCA+0 ICCX+20 ICCY-15 RCCX12 RCCY14
206
Programmation : programmer les contours
Y
100
5
R1
75
30
R18
R15
20
20
50
75
100
X
0 BEGIN PGM FK1 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S500
Appel de l'outil
4 L Z+250 R0 FMAX
Dégager l'outil
5 L X-20 Y+30 R0 FMAX
Prépositionner l’outil
6 L Z-10 R0 F1000 M3
Aller à la profondeur d’usinage
7 APPR CT X+2 Y+30 CCA90 R+5 RL F250
Aborder le contour sur un cercle avec raccordement tangentiel
8 FC DR- R18 CLSD+ CCX+20 CCY+30
Bloc FK :
9 FLT
Pour chaque élément du contour, programmer les données connues
10 FCT DR- R15 CCX+50 CCY+75
11 FLT
12 FCT DR- R15 CCX+75 CCY+20
13 FLT
14 FCT DR- R18 CLSD- CCX+20 CCY+30
15 DEP CT CCA90 R+5 F1000
Quitter le contour sur un cercle avec raccordement tangentiel
16 L X-30 Y+0 R0 FMAX
17 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
18 END PGM FK1 MM
HEIDENHAIN TNC 320
207
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Exemple : programmation FK 1
10
Y
10
R20
55
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Exemple : programmation FK 2
30
60°
R30
30
X
0 BEGIN PGM FK2 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
Définition de la pièce brute
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S4000
Appel de l'outil
4 L Z+250 R0 FMAX
Dégager l'outil
5 L X+30 Y+30 R0 FMAX
Prépositionner l’outil
6 L Z+5 R0 FMAX M3
Prépositionner l’axe d’outil
7 L Z-5 R0 F100
Aller à la profondeur d’usinage
208
Programmation : programmer les contours
Aborder le contour sur un cercle avec raccordement tangentiel
9 FPOL X+30 Y+30
Bloc FK :
10 FC DR- R30 CCX+30 CCY+30
Pour chaque élément du contour, programmer les données connues
11 FL AN+60 PDX+30 PDY+30 D10
12 FSELECT 3
13 FC DR- R20 CCPR+55 CCPA+60
14 FSELECT 2
15 FL AN-120 PDX+30 PDY+30 D10
16 FSELECT 3
17 FC X+0 DR- R30 CCX+30 CCY+30
18 FSELECT 2
19 DEP LCT X+30 Y+30 R5
Quitter le contour sur un cercle avec raccordement tangentiel
20 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
21 END PGM FK2 MM
HEIDENHAIN TNC 320
209
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
8 APPR LCT X+0 Y+30 R5 RR F350
Y
R1
0
R5
X
R4
0
R5
30
R6
R6
-10
-25
R1,5
R36
R24
50
R65
0
R5
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Exemple : programmation FK 3
12
44
65
110
0 BEGIN PGM FK3 MM
1 BLK FORM 0.1 Z X-45 Y-45 Z-20
Définition de la pièce brute
2 BLK FORM 0.2 X+120 Y+70 Z+0
3 TOOL CALL 1 Z S4500
Appel de l'outil
4 L Z+250 R0 FMAX
Dégager l'outil
5 L X-70 Y+0 R0 FMAX
Prépositionner l’outil
6 L Z-5 R0 F1000 M3
Aller à la profondeur d’usinage
210
Programmation : programmer les contours
Aborder le contour sur un cercle avec raccordement tangentiel
8 FC DR- R40 CCX+0 CCY+0
Bloc FK :
9 FLT
Pour chaque élément du contour, programmer les données connues
10 FCT DR- R10 CCX+0 CCY+50
11 FLT
12 FCT DR+ R6 CCX+0 CCY+0
13 FCT DR+ R24
14 FCT DR+ R6 CCX+12 CCY+0
15 FSELECT 2
16 FCT DR- R1.5
17 FCT DR- R36 CCX+44 CCY-10
18 FSELECT 2
19 FCT DR+ R5
20 FLT X+110 Y+15 AN+0
21 FL AN-90
22 FL X+65 AN+180 PAR21 DP30
23 RND R5
24 FL X+65 Y-25 AN-90
25 FC DR+ R50 CCX+65 CCY-75
26 FCT DR- R65
27 FSELECT 1
28 FCT Y+0 DR- R40 CCX+0 CCY+0
29 FSELECT 4
30 DEP CT CCA90 R+5 F1000
Quitter le contour sur un cercle avec raccordement tangentiel
31 L X-70 R0 FMAX
32 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
33 END PGM FK3 MM
HEIDENHAIN TNC 320
211
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
7 APPR CT X-40 Y+0 CCA90 R+5 RL F250
212
Programmation : programmer les contours
6.6 Programmation de contour libre FK (Option logiciel Advanced
programming features)
Programmation : sousprogrammes et
répétitions de parties de
programme
HEIDENHAIN TNC 320
213
7.1 Identifier les sous-programmes et répétitions de parties de programme
7.1 Identifier les sous-programmes
et répétitions de parties de
programme
Vous pouvez exécuter plusieurs fois des phases d’usinage déjà
programmées en utilisant les sous-programmes et répétitions de
parties de programmes.
Label
Les sous-programmes et répétitions de parties de programme sont
désignés par un début avec l'étiquette LBL, abréviation de LABEL (de
l'angl. signifiant marque, étiquette).
Les LABELS reçoivent un numéro compris entre 1 et 999 ou bien un
nom à définir par vous-même. Chaque numéro de LABEL ou chaque
nom de LABEL ne peut être attribué qu'une seule fois dans le
programme avec la touche LABEL SET. Le nombre de noms de labels
que l'on peut introduire n'est limité que par la mémoire interne.
Ne pas utiliser un numéro ou un nom de label plusieurs
fois!
Label 0 (LBL 0) identifie la fin d’un sous-programme et peut donc être
utilisé autant de fois qu’on le souhaite.
214
Programmation : sous-programmes et répétitions de parties de programme
7.2 Sous-programmes
7.2 Sous-programmes
Mode opératoire
1
2
3
La TNC exécute le programme d'usinage jusqu'à un appel de sousprogramme CALL LBL
A partir de là, la TNC exécute le sous-programme appelé jusqu'à la
fin du sous-programme LBL 0
Puis, la TNC continue le programme d'usinage avec la séquence
suivant l'appel du sous-programme CALL LBL
Remarques sur la programmation
„ Un programme principal peut contenir jusqu’à 254 sousprogrammes
„ Vous pouvez appeler les sous-programmes dans n’importe quel
ordre et autant de fois que vous le souhaitez
„ Un sous-programme ne peut pas s’appeler lui-même
„ Programmer les sous-programmes à la fin du programme principal
(derrière la séquence avec M2 ou M30)
„ Quand des sous-programmes sont situés dans le programme
d'usinage avant la séquence avec M2 ou M30, ils seront exécutés
au moins une fois sans qu'il soit nécessaire de les appeler
Programmer un sous-programme
U
Programmer le début : appuyer sur la touche LBL SET
U
Introduire le numéro du sous-programme. Si vous
souhaitez utiliser des noms de LABEL : appuyez sur
la softkey LBL NAME pour choisir l'introduction de
texte
U
Programmer la fin : appuyer sur la touche LBL SET et
introduire le numéro de label „0“
Appeler un sous-programme
U
Appeler le sous-programme : appuyer sur LBL CALL
U
Numéro de label : introduire le numéro de label du
sous-programme à appeler. Si vous souhaitez utiliser
des noms de LABEL : appuyez sur la softkey LBL
NAME pour choisir l'introduction de texte
U
Répétitions REP : sauter cette question de dialogue
avec la touche NO ENT. N'utiliser les répétitions REP
que pour les répétitions de parties de programme
CALL LBL 0 n’est pas autorisé dans la mesure où il
correspond à l’appel de la fin d’un sous-programme.
HEIDENHAIN TNC 320
215
7.3 Répétitions de parties de programme
7.3 Répétitions de parties de
programme
Label LBL
Les répétitions de parties de programme commencent avec
l'étiquette LBL. Une répétition se termine avec CALL LBL n REPn.
1
Mode opératoire
1
2
3
0 BEGIN PGM ...
La TNC exécute le programme d'usinage jusqu'à la fin de la partie
de programme (CALL LBL n REPn)
La TNC répète ensuite la partie de programme entre le LABEL
appelé et l'appel de label CALL LBL n REPn autant de fois que vous
l'avez défini sous REP
La TNC poursuit ensuite l'exécution du programme d'usinage
LBL1
2
R
2/1
R
2/2
CALL LBL 1 REP 2
3
END PGM ...
Remarques sur la programmation
„ Vous pouvez répéter une partie de programme jusqu'à 65 534 fois
„ Les parties de programme sont toujours exécutées une fois de plus
qu’elles n’ont été programmées.
Programmer une répétition de partie de
programme
U
Programmer le début : appuyer sur la touche LBL SET
et introduire un numéro de LABEL pour la partie de
programme qui doit être répétée. Si vous souhaitez
utiliser des noms de LABEL : appuyez sur la softkey
LBL NAME pour choisir l'introduction de texte
U
Introduire la partie de programme
Programmer une répétition de partie de
programme
216
U
Appuyer sur la touche LBL CALL
U
Appel sous-prog/répét. partie prog : introduire le
numéro du label de la partie de programme qui doit
être répétée, valider avec la touche ENT. Si vous
souhaitez utiliser des noms de LABEL : appuyez sur
la softkey “lbl name“ pour choisir l'introduction de
texte
U
Répétition REP : introduire le nombre de répétitions,
valider avec la touche ENT
Programmation : sous-programmes et répétitions de parties de programme
Mode opératoire
1
2
3
La TNC exécute le programme d'usinage jusqu'à ce que vous
appeliez un autre programme avec CALL PGM
La TNC exécute ensuite le programme appelé jusqu'à la fin de
celui-ci
Puis, la TNC poursuit l'exécution du programme d'usinage (qui
appelle) avec la séquence suivant l'appel du programme
Remarques sur la programmation
„ Pour utiliser un programme quelconque comme un sousprogramme, la TNC n’a pas besoin de LABEL.
„ Le programme appelé ne doit pas contenir les fonctions auxiliaires
M2 ou M30. Dans le programme qui est appelé, si vous avez défini
des sous-programmes avec labels, vous pouvez alors utiliser M2 ou
M30 avec la fonction de saut FN 9: IF +0 EQU +0 GOTO LBL 99 pour
sauter cette partie de programme
„ Le programme appelé ne doit pas contenir d'appel CALL PGM dans le
programme qui appelle (boucle infinie)
HEIDENHAIN TNC 320
0 BEGIN PGM A
1
0 BEGIN PGM B
S
2
CALL PGM B
3
END PGM A
R
END PGM B
217
7.4 Programme quelconque utilisé comme sous-programme
7.4 Programme quelconque utilisé
comme sous-programme
7.4 Programme quelconque utilisé comme sous-programme
Programme quelconque utilisé comme sousprogramme
U
Fonction permettant d'appeler le programme :
appuyer sur la touche PGM CALL
U
Appuyer sur la softkey PROGRAMME : la TNC
démarre le dialogue pour définir le programme à
appeler. Introduire le chemin avec le clavier virtuel
(touche GOTO), ou
U
La TNC met au premier plan une fenêtre, au moyen de
laquelle vous pouvez choisir le programme à appeler
et le valider avec la touche END
Si vous n'introduisez que le nom du programme, le
programme appelé doit être dans le même répertoire le
programme qui appelle.
Si le programme appelé n'est pas dans le même répertoire
que celui du programme qui appelle, le chemin d'accès
doit être introduit en entier, par exemple :
TNC:\ZW35\EBAUCHE\PGM1.H
Si vous souhaitez appeler un programme en DIN/ISO,
introduisez dans ce cas le type de fichier .I derrière le nom
du programme.
Vous pouvez également appeler n'importe quel
programme à l'aide du cycle 12 PGM CALL.
Avec un PGM CALL, les paramètres Q ont toujours un effet
global. Tenez compte du fait que les modifications des
paramètres Q dans le programme appelé se répercute
éventuellement sur le programme appelant.
218
Programmation : sous-programmes et répétitions de parties de programme
7.5 Imbrications
7.5 Imbrications
Types d'imbrications
„ Sous-programmes dans sous-programme
„ Répétitions de parties de programme dans répétition de parties de
programme
„ Répéter des sous-programmes
„ Répétitions de parties de programme dans sous-programme
Niveaux d'imbrication
Les niveaux d’imbrication définissent combien les parties de
programme ou les sous-programmes peuvent contenir d’autres sousprogrammes ou répétitions de parties de programme.
„ Niveaux d’imbrication max. pour les sous-programmes : 8
„ Niveaux d'imbrication max. pour les appels de programme
principal : 6, un CYCL CALL agissant comme un appel de programme
principal
„ Vous pouvez imbriquer à volonté des répétitions de parties de
programme
HEIDENHAIN TNC 320
219
7.5 Imbrications
Sous-programme dans sous-programme
Exemple de séquences CN
0 BEGIN PGM SPGMS MM
...
Appeler le sous-programme au niveau de LBL SP1
17 CALL LBL “SP1“
...
Dernière séquence de programme du
35 L Z+100 R0 FMAX M2
programme principal (avec M2)
Début du sous-programme SP1
36 LBL “SP1“
...
Le sous-programme LBL2 est appelé
39 CALL LBL 2
...
45 LBL 0
Fin du sous-programme 1
46 LBL 2
Début du sous-programme 2
...
Fin du sous-programme 2
62 LBL 0
63 END PGM SPGMS MM
Exécution du programme
1 Le programme principal SPMS est exécuté jusqu'à la séquence 17
2 Le sous-programme SP1 est appelé et exécuté jusqu'à la
séquence 39
3 Le sous-programme 2 est appelé et exécuté jusqu'à la séquence
62. Fin du sous-programme 2 et retour au sous-programme dans
lequel il a été appelé
4 Le sous-programme 1 est exécuté de la séquence 40 à la
séquence 45. Fin du sous-programme 1 et retour au programme
principal SPGMS
5 Le programme principal SPGMS est exécuté de la séquence 18 à
la séquence 35. Retour à la séquence 1 et fin du programme
220
Programmation : sous-programmes et répétitions de parties de programme
7.5 Imbrications
Renouveler des répétitions de parties de
programme
Exemple de séquences CN
0 BEGIN PGM REPS MM
...
15 LBL 1
Début de la répétition de partie de programme 1
...
20 LBL 2
Début de la répétition de partie de programme 2
...
27 CALL LBL 2 REP 2
Partie de programme entre cette séquence et LBL 2
...
(séquence 20) répétée 2 fois
35 CALL LBL 1 REP 1
Partie de programme entre cette séquence et LBL 1
...
(séquence 15) répétée 1 fois
50 END PGM REPS MM
Exécution du programme
1 Le programme principal REPS est exécuté jusqu'à la séquence 27
2 La partie de programme située entre la séquence 27 et la
séquence 20 est répétée 2 fois
3 Le programme principal REPS est exécuté de la séquence 28 à la
séquence 35
4 La partie de programme située entre la séquence 35 et la
séquence 15 est répétée 1 fois (contenant la répétition de partie
de programme de la séquence 20 à la séquence 27)
5 Le programme principal REPS est exécuté de la séquence 36 à la
séquence 50 (fin du programme)
HEIDENHAIN TNC 320
221
7.5 Imbrications
Répéter un sous-programme
Exemple de séquences CN
0 BEGIN PGM SPGREP MM
...
10 LBL 1
Début de la répétition de partie de programme 1
11 CALL LBL 2
Appel du sous-programme
12 CALL LBL 1 REP 2
Partie de programme entre cette séquence et LBL1
...
(séquence 10) répétée 2 fois
19 L Z+100 R0 FMAX M2
Dernière séqu. du programme principal avec M2
20 LBL 2
Début du sous-programme
...
Fin du sous-programme
28 LBL 0
29 END PGM SPGREP MM
Exécution du programme
1 Le programme principal SPREP est exécuté jusqu'à la séquence
11
2 Le sous-programme 2 est appelé et exécuté
3 La partie de programme située entre la séquence 12 et la
séquence 10 est répétée 2 fois : Le sous-programme 2 est répété
2 fois
4 Le programme principal SPGREP est exécuté de la séquence 13 à
la séquence 19 ; fin du programme
222
Programmation : sous-programmes et répétitions de parties de programme
7.6 Exemples de programmation
7.6 Exemples de programmation
Exemple : Fraisage d’un contour en plusieurs passes
Déroulement du programme
Y
100
5
R1
„ Pré-positionner l'outil sur l’arête supérieure de la
pièce
„ Introduire la passe en valeur incrémentale
„ Fraisage de contour
„ Répéter la passe et le fraisage du contour
75
30
R18
R15
20
20
50
75
100
X
0 BEGIN PGM PGMREP MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-40
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S500
Appel de l'outil
4 L Z+250 R0 FMAX
Dégager l'outil
5 L X-20 Y+30 R0 FMAX
Pré-positionnement dans le plan d’usinage
6 L Z+0 R0 FMAX M3
Pré-positionnement sur l’arête supérieure de la pièce
HEIDENHAIN TNC 320
223
7.6 Exemples de programmation
7 LBL 1
Marque pour répétition de partie de programme
8 L IZ-4 R0 FMAX
Passe en profondeur incrémentale (dans le vide)
9 APPR CT X+2 Y+30 CCA90 R+5 RL F250
Accoster le contour
10 FC DR- R18 CLSD+ CCX+20 CCY+30
Contour
11 FLT
12 FCT DR- R15 CCX+50 CCY+75
13 FLT
14 FCT DR- R15 CCX+75 CCY+20
15 FLT
16 FCT DR- R18 CLSD- CCX+20 CCY+30
17 DEP CT CCA90 R+5 F1000
Quitter le contour
18 L X-20 Y+0 R0 FMAX
Dégager l'outil
19 CALL LBL 1 REP 4
Retour au LBL 1; au total quatre fois
20 L Z+250 R0 FMAX M2
Dégager l'outil, fin du programme
21 END PGM PGMREP MM
224
Programmation : sous-programmes et répétitions de parties de programme
7.6 Exemples de programmation
Exemple : groupe de trous
Déroulement du programme
„ Aborder les groupes de trous dans le
programme principal
„ Appeler le groupe de trous (sous-programme 1)
„ Ne programmer le groupe de trous qu'une
seule fois dans le sous-programme 1
Y
100
2
60
5
1
3
20
20
10
15
45
75
100
X
0 BEGIN PGM SP1 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S5000
Appel de l'outil
4 L Z+250 R0 FMAX
Dégager l'outil
5 CYCL DEF 200 PERÇAGE
Définition du cycle Perçage
Q200=2
;DISTANCE D'APPROCHE
Q201=-10
;PROFONDEUR
Q206=250
;AVANCE PLONGÉE PROF.
Q202=5
;PROFONDEUR DE PASSE
Q210=0
;TEMPO. EN HAUT
Q203=+0
;COORD. SURFACE PIÈCE
Q204=10
;SAUT DE BRIDE
Q211=0.25
;TEMPO. AU FOND
HEIDENHAIN TNC 320
225
7.6 Exemples de programmation
6 L X+15 Y+10 R0 FMAX M3
Aborder le point initial du groupe de trous 1
7 CALL LBL 1
Appeler le sous-programme du groupe de trous
8 L X+45 Y+60 R0 FMAX
Aborder le point initial du groupe de trous 2
9 CALL LBL 1
Appeler le sous-programme du groupe de trous
10 L X+75 Y+10 R0 FMAX
Aborder le point initial du groupe de trous 3
11 CALL LBL 1
Appeler le sous-programme du groupe de trous
12 L Z+250 R0 FMAX M2
Fin du programme principal
13 LBL 1
Début du sous-programme 1 : groupe de trous
14 CYCL CALL
Trou 1
15 L IX+20 R0 FMAX M99
Aborder le 2ème trou, appeler le cycle
16 L IY+20 R0 FMAX M99
Aborder le 3ème trou, appeler le cycle
17 L IX-20 R0 FMAX M99
Aborder le 4ème trou, appeler le cycle
18 LBL 0
Fin du sous-programme 1
19 END PGM SP1 MM
226
Programmation : sous-programmes et répétitions de parties de programme
7.6 Exemples de programmation
Exemple : groupe trous avec plusieurs outils
Déroulement du programme
Y
Y
100
2
60
5
20
1
10
15
3
20
„ Programmer les cycles d’usinage dans le
programme principal
„ Appeler le groupe de trous (sousprogramme 1)
„ Aller au groupe de trous dans le sousprogramme 1, appeler le groupe de trous (sousprogramme 2)
„ Ne programmer le groupe de trous qu'une
seule fois dans le sous-programme 2
45
75
100
X
-15
Z
-20
0 BEGIN PGM SP2 MM
1 BLK FORM 0.1 Z X+0 Y+0 Z-20
2 BLK FORM 0.2 X+100 Y+100 Z+0
3 TOOL CALL 1 Z S5000
Appel d’outil, foret à centrer
4 L Z+250 R0 FMAX
Dégager l'outil
5 CYCL DEF 200 PERÇAGE
Définition du cycle de centrage
Q200=2
;DISTANCE D'APPROCHE
Q202=-3
;PROFONDEUR
Q206=250
;AVANCE PLONGÉE PROF.
Q202=3
;PROFONDEUR DE PASSE
Q210=0
;TEMPO. EN HAUT
Q203=+0
;COORD. SURFACE PIÈCE
Q204=10
;SAUT DE BRIDE
Q211=0.25
;TEMPO. AU FOND
6 CALL LBL 1
HEIDENHAIN TNC 320
Appeler sous-programme 1 de la figure de trous complète
227
7.6 Exemples de programmation
7 L Z+250 R0 FMAX M6
Changement d'outil
8 TOOL CALL 2 Z S4000
Appel d’outil , foret
9 FN 0: Q201 = -25
Nouvelle profondeur de perçage
10 FN 0: Q202 = +5
Nouvelle passe de perçage
11 CALL LBL 1
Appeler sous-programme 1 de la figure de trous complète
12 L Z+250 R0 FMAX M6
Changement d'outil
13 TOOL CALL 3 Z S500
Appel d’outil, alésoir
14 CYCL DEF 201 ALÉS. À L'ALÉSOIR
Définition du cycle d’alésage à l'alésoir
Q200=2
;DISTANCE D'APPROCHE
Q201=-15
;PROFONDEUR
Q206=250
;AVANCE PLONGÉE PROF.
Q211=0.5
;TEMPO. EN HAUT
Q208=400
;AVANCE RETRAIT
Q203=+0
;COORD. SURFACE PIÈCE
Q204=10
;SAUT DE BRIDE
15 CALL LBL 1
Appeler sous-programme 1 de la figure de trous complète
16 L Z+250 R0 FMAX M2
Fin du programme principal
17 LBL 1
Début du sous-programme 1 : figure de trous complète
18 L X+15 Y+10 R0 FMAX M3
Aborder le point initial du groupe de trous 1
19 CALL LBL 2
Appeler le sous-programme 2 du groupe de trous
20 L X+45 Y+60 R0 FMAX
Aborder le point initial du groupe de trous 2
21 CALL LBL 2
Appeler le sous-programme 2 du groupe de trous
22 L X+75 Y+10 R0 FMAX
Aborder le point initial du groupe de trous 3
23 CALL LBL 2
Appeler le sous-programme 2 du groupe de trous
24 LBL 0
Fin du sous-programme 1
25 LBL 2
Début du sous-programme 2 : groupe de trous
26 CYCL CALL
1er trou avec cycle d'usinage actif
27 L IX+20 R0 FMAX M99
Aborder le 2ème trou, appeler le cycle
28 L IY+20 R0 FMAX M99
Aborder le 3ème trou, appeler le cycle
29 L IX-20 R0 FMAX M99
Aborder le 4ème trou, appeler le cycle
30 LBL 0
Fin du sous-programme 2
31 END PGM SP2 MM
228
Programmation : sous-programmes et répétitions de parties de programme
Programmation :
Paramètres Q
8.1 Principe et vue d’ensemble des fonctions
8.1 Principe et vue d’ensemble des
fonctions
Grâce aux paramètres, vous pouvez définir toute une famille de pièces
dans un même programme d'usinage. A la place des valeurs
numériques, vous introduisez des variables : les paramètres Q.
Exemples d’utilisation des paramètres Q :
Q6
„ Valeurs de coordonnées
„ Avances
„ Vitesses de rotation
„ Données de cycle
Q1
Q3
Q4
Les paramètres Q permettent également de programmer des
contours définis par des fonctions mathématiques ou bien de réaliser
des phases d'usinage dépendant de conditions logiques. En liaison
avec la programmation FK, vous pouvez aussi combiner des contours
dont la cotation n'est pas orientée CN avec les paramètres Q.
Q2
Q5
Les paramètres Q sont identifiés par des lettres suivies d'un nombre
compris entre 0 et 1999. L'effet des paramètres est variable, voir
tableau suivant :
Signification
Plage
Paramètres libres d'utilisation à condition
qu'il n'y ai pas de recouvrement avec les
cycles SL ; effet global pour tous les
programmes contenus dans la mémoire de la
TNC
Q0 à Q99
Paramètres pour fonctions spéciales de la
TNC
Q100 à Q199
Paramètres préconisés pour les cycles : effet
global pour tous les programmes contenus
dans la mémoire de la TNC
Q200 à Q1199
Paramètres préconisés pour les cycles
constructeur : effet global pour tous les
programmes contenus dans la mémoire de la
TNC. Une concertation est éventuellement
nécessaire avec le constructeur de la
machine ou le prestataire.
Q1200 à Q1399
Paramètres préconisés pour les cycles
constructeur actifs avec Call ; effet global
pour tous les programmes contenus dans la
mémoire de la TNC
Q1400 à Q1499
Paramètres préconisés pour les cycles
constructeur actifs avec Def ; effet global
pour tous les programmes contenus dans la
mémoire de la TNC
Q1500 à Q1599
230
Programmation : Paramètres Q
Plage
Paramètres pouvant être utilisés librement,
effet global pour tous les programmes
contenus dans la mémoire de la TNC
Q1600 à Q1999
Paramètres QL pouvant être utilisés
librement, seulement à effet local à
l'intérieur d'un programme
QL0 à QL499
Paramètres QR pouvant être utilisés
librement, à effet permanent (rémanent), y
compris après une coupure de courant
QR0 à QR499
8.1 Principe et vue d’ensemble des fonctions
Signification
Les paramètres QS (S signifiant „string“ = chaîne) sont également à
votre disposition si vous désirez traiter du texte dans la TNC. Les
paramètres QS ont des plages identiques à celles des paramètres Q
(voir tableau ci-dessus).
Attention : concernant les paramètres QS, la plage QS100 à
QS199 est réservée aux textes internes.
Les paramètres locaux QL ne sont valables qu'à l'intérieur
d'un programme et ne sont pas pris en compte lors
d'appels de programme ou dans les macros.
Remarques concernant la programmation
Les paramètres Q et valeurs numériques peuvent être mélangés dans
un programme.
Vous pouvez affecter aux paramètres Q des valeurs numériques
comprises entre –99 999,9999 et +99 999,9999. La saisie de nombre
est limitée à 15 caractères, dont au maximum 9 avant la virgule. En
interne, la TNC peut calculer des valeurs jusqu'à 1010.
Paramètres QS : vous pouvez leur affecter jusqu'à 254 caractères.
Certains paramètres Q et QS ont une affectation fixe, p.
ex. au paramètre Q108 est toujours affecté le rayon de
l'outilvoir „Paramètres Q réservés”, page 292.
HEIDENHAIN TNC 320
231
8.1 Principe et vue d’ensemble des fonctions
Appeler les fonctions des paramètres Q
Lors de la création d'un programme d'usinage, appuyez sur la touche
„Q“ (située sous la touche –/+ du pavé numérique). La TNC affiche
alors les softkeys suivantes :
Groupe de fonctions
Softkey
Page
Fonctions mathématiques de base
Page 234
Fonctions trigonométriques
Page 236
Fonction de calcul d'un cercle
Page 238
Sauts conditionnels
Page 239
Fonctions spéciales
Page 242
Introduire directement une formule
Page 276
Fonction pour l'usinage de contours
complexes
Voir manuel
d'utilisation
des cycles
Quand vous définissez ou affectez un paramètre Q, la TNC
affiche les softkeys Q, QS et QR. Ces softkeys permettent
de sélectionner le type de paramètre. Vous introduisez
ensuite le numéro de paramètre.
Si un clavier USB est raccordé, il est possible d'ouvrir
le dialogue du formulaire de saisie en appuyant sur la
touche Q.
232
Programmation : Paramètres Q
8.2 Familles de pièces – Paramètres Q à la place de valeurs numériques
8.2 Familles de pièces – Paramètres
Q à la place de valeurs
numériques
Application
A l'aide de la fonction paramètres Q FN 0: AFFECTATION, vous pouvez
affecter aux paramètres Q des valeurs numériques. Dans le
programme d'usinage, vous introduisez un paramètre Q à la place
d'une valeur numérique.
Exemple de séquences CN
15 FN O: Q10=25
Affectation
...
Q10 reçoit la valeur 25
25
L X +Q10
correspond à L X +25
Pour des familles de pièces, vous affectez p. ex. des paramètres Q aux
dimensions caractéristiques de la pièce.
Vous affectez alors à chacun de ces paramètres la valeur numérique
correspondante pour usiner des pièces de formes différentes.
Exemple
Cylindre avec paramètres Q
Rayon du cylindre
Hauteur du cylindre
Cylindre Z1
Cylindre Z2
R = Q1
H = Q2
Q1 = +30
Q2 = +10
Q1 = +10
Q2 = +50
Q1
Q1
Q2
Q2
HEIDENHAIN TNC 320
Z2
Z1
233
8.3 Décrire les contours avec les fonctions mathématiques
8.3 Décrire les contours avec les
fonctions mathématiques
Application
Grâce aux paramètres Q, vous pouvez programmer des fonctions
mathématiques de base dans le programme d'usinage :
U
U
Sélectionner la fonction de paramètres Q : appuyer sur la touche Q
(dans le champ de saisie à droite). La barre de softkeys affiche les
fonctions des paramètres Q
Sélectionner les fonctions mathématiques de base : appuyer sur la
softkey ARITHM. DE BASE. La TNC affiche les softkeys suivantes :
Tableau récapitulatif
Fonction
Softkey
FN 0: AFFECTATION
Ex. FN 0: Q5 = +60
Affecter directement une valeur
FN 1: ADDITION
Ex. FN 1: Q1 = -Q2 + -5
Additionner deux valeurs et affecter le résultat
FN 2: SOUSTRACTION
Ex. FN 2: Q1 = +10 - +5
Soustraire deux valeurs et affecter le résultat
FN 3: MULTIPLICATION
Ex. FN 3: Q2 = +3 * +3
Multiplier deux valeurs et affecter le résultat
FN 4: DIVISION
Ex. FN 4: Q4 = +8 DIV +Q2
Diviser deux valeurs et affecter le résultat
Interdit : Division par 0!
FN 5: RACINE
Ex. FN 5: Q20 = SQRT 4
Extraire la racine carrée d'un nombre et affecter le
résultat
Interdit : Racine carrée d'une valeur négative!
A droite du signe „=“, vous pouvez introduire :
„ deux nombres
„ deux paramètres Q
„ un nombre et un paramètre Q
A l’intérieur des équations, vous pouvez donner le signe de votre choix
aux paramètres Q et valeurs numériques.
234
Programmation : Paramètres Q
Exemple : Séquences de programme dans la TNC
Exemple :
Choisir les fonctions des paramètres Q : appuyer sur
la touche Q
16 FN 0: Q5 = +10
17 FN 3: Q12 = +Q5 * +7
Sélectionner les fonctions mathématiques de base :
appuyer sur la softkey ARITHM. DE BASE
Sélectionner la fonction des paramètres Q
AFFECTATION : Softkey FN0 X = Y
NR. PARAMÈTRE POUR RÉSULTAT ?
5
Introduire le numéro du paramètre Q : 5
1. VALEUR OU PARAMÈTRE ?
10
Affecter la valeur numérique 10 à Q5
Choisir les fonctions des paramètres Q : appuyer sur
la touche Q
Sélectionner les fonctions mathématiques de base :
appuyer sur la softkey ARITHM. DE BASE
Sélectionner la fonction des paramètres Q
MULTIPLICATION : Softkey FN3 X * Y
NR. PARAMÈTRE POUR RÉSULTAT ?
12
Introduire le numéro du paramètre Q : 12
1. VALEUR OU PARAMÈTRE ?
Q5
Introduire Q5 comme première valeur
2. VALEUR OU PARAMÈTRE ?
7
Introduire 7 comme deuxième valeur
HEIDENHAIN TNC 320
235
8.3 Décrire les contours avec les fonctions mathématiques
Programmation des calculs de base
8.4 Fonctions trigonométriques
8.4 Fonctions trigonométriques
Définitions
Sinus, cosinus et tangente correspondent aux rapports entre les côtés
d’un triangle rectangle. On a :
Sinus :
Cosinus :
Tangente :
sin α = a / c
cos α = b / c
tan α = a / b = sin α / cos α
c
Explications
„ c est le côté opposé à l'angle droit
„ a est le côté opposé de l'angle α
„ b est le troisième côté
a
Þ
b
La TNC peut calculer l’angle à partir de la tangente :
α = arctan (a / b) = arctan (sin α / cos α)
Exemple :
a = 25 mm
b = 50 mm
α = arctan (a / b) = arctan 0.5 = 26.57°
De plus :
a² + b² = c² (avec a² = a x a)
c =
236
(a² + b²)
Programmation : Paramètres Q
8.4 Fonctions trigonométriques
Programmer les fonctions trigonométriques
Les fonctions trigonométriques s'affichent avec la softkey TRIGONOMETRIE. La TNC affiche les softkeys du tableau ci-dessous.
Programmation : comparer avec „Exemple de programmation pour les
calculs de base“
Fonction
Softkey
FN 6: SINUS
Ex. FN 6: Q20 = SIN-Q5
Définir le sinus d'un angle en degrés (°) et l'affecter
FN 7: COSINUS
Ex. FN 7: Q21 = COS-Q5
Définir le cosinus d'un angle en degrés (°) et l'affecter
FN 8: RACINE DE SOMME DE CARRES
Ex. FN 8: Q10 = +5 LEN +4
Définir la racine de somme de carrés et l'affecter
FN 13: ANGLE
Ex. FN 13: Q20 = +25 ANG-Q1
Définir l'angle avec arctan à partir de deux côtés ou
sin et cos de l'angle (0 < angle < 360°) et l'affecter
HEIDENHAIN TNC 320
237
8.5 Calculs d'un cercle
8.5 Calculs d'un cercle
Application
Grâce aux fonctions de calcul d'un cercle, la TNC peut déterminer le
centre du cercle et son rayon à partir de trois ou quatre points situés
sur le cercle. Le calcul d'un cercle à partir de quatre points est plus
précis.
Application : vous pouvez utiliser ces fonctions, notamment lorsque
vous voulez déterminer la position et la dimension d'un trou ou d'un
cercle de trous à l'aide de la fonction programmable de palpage.
Fonction
Softkey
FN 23: Calculer les DONNEES D'UN CERCLE à partir
de 3 points du cercle
Ex. FN 23: Q20 = CDATA Q30
Les paires de coordonnées de trois points du cercle doivent être
mémorisées dans le paramètre Q30 et dans les cinq paramètres
suivants – donc jusqu'à Q35.
La TNC mémorise alors le centre du cercle de l'axe principal (X pour
axe de broche Z) dans le paramètre Q20, le centre du cercle de l'axe
secondaire (Y pour axe de broche Z) dans le paramètre Q21 et le rayon
du cercle dans le paramètre Q22.
Fonction
Softkey
FN 24: Calculer les DONNEES D'UN CERCLE à partir
de 4 points du cercle
p. ex. FN 24: Q20 = CDATA Q30
Les paires de coordonnées de quatre points du cercle doivent être
mémorisées dans le paramètre Q30 et dans les sept paramètres
suivants – donc jusqu'à Q37.
La TNC mémorise alors le centre du cercle de l'axe principal (X pour
axe de broche Z) dans le paramètre Q20, le centre du cercle de l'axe
secondaire (Y pour axe de broche Z) dans le paramètre Q21 et le rayon
du cercle dans le paramètre Q22.
Notez que FN 23 et FN 24, outre le paramètre pour résultat,
remplacent aussi automatiquement les deux paramètres
suivants.
238
Programmation : Paramètres Q
8.6 Sauts conditionnels avec paramètres Q
8.6 Sauts conditionnels avec
paramètres Q
Application
Avec les sauts conditionnels, la TNC compare un paramètre Q à un
autre paramètre Q ou à une autre valeur numérique. Si la condition est
remplie, la TNC poursuit le programme d'usinage en sautant au label
programmé après la condition(label, voir „Identifier les sousprogrammes et répétitions de parties de programme”, page 214). Si la
condition n'est pas remplie, la TNC exécute la séquence suivante.
Si vous souhaitez appeler un autre programme comme sousprogramme, programmez alors derrière le label un appel de
programme PGM CALL.
Sauts inconditionnels
Les sauts inconditionnels sont des sauts dont la condition est toujours
remplie. Exemple :
FN 9: IF+10 EQU+10 GOTO LBL1
Programmer les sauts conditionnels
Les sauts conditionnels apparaissent lorsque vous appuyez sur la
softkey SAUTS. La TNC affiche les softkeys suivantes :
Fonction
Softkey
FN 9: SI EGAL, ALORS SAUT
Ex. FN 9: IF +Q1 EQU +Q3 GOTO LBL “SPCAN25“
Si les deux valeurs ou paramètres sont égaux, saut au
label indiqué
FN 10: SI DIFFERENT, ALORS SAUT
Ex. FN 10: IF +10 NE –Q5 GOTO LBL 10
Si les deux valeurs ou paramètres sont différents, saut
au label indiqué
FN 11: SI SUPERIEUR, ALORS SAUT
Ex. FN 11: IF+Q1 GT+10 GOTO LBL 5
Si la 1ère valeur ou le 1er paramètre est supérieur(e) à
la 2ème valeur ou au 2ème paramètre, saut au label
indiqué
FN 12: SI INFERIEUR, ALORS SAUT
Ex. FN 12: IF+Q5 LT+0 GOTO LBL “ANYNAME“
Si la 1ère valeur ou le 1er paramètre est inférieur(e) à
la 2ème valeur ou au 2ème paramètre, saut au label
indiqué
HEIDENHAIN TNC 320
239
8.6 Sauts conditionnels avec paramètres Q
Abréviations et expressions utilisées
IF
EQU
NE
GT
LT
GOTO
240
(angl.) :
(angl. equal) :
(angl. not equal) :
(angl. greater than) :
(angl. less than) :
(angl. go to) :
si
Egal à
différent de
supérieur à
inférieur à
aller à
Programmation : Paramètres Q
8.7 Contrôler et modifier les paramètres Q
8.7 Contrôler et modifier les
paramètres Q
Procédure
Vous pouvez contrôler et également modifier les paramètres Q
pendant la programmation, le test ou tous les modes exécution.
U
Si nécessaire, interrompre l'exécution du programme (p. ex. en
appuyant sur la touche STOP externe et sur la softkey STOP
INTERNE) ou suspendre le test du programme
U Appeler les fonctions de paramètres Q : appuyer sur
la softkey Q INFO ou sur la touche Q
U
La TNC affiche tous les paramètres ainsi que les
valeurs correspondantes. Sélectionnez le paramètre
souhaité avec les touches fléchées ou la touche
GOTO.
U
Si vous souhaitez modifier la valeur, appuyer sur la
softkey EDITER CHAMP ACTUEL, introduisez une
nouvelle valeur et validez avec la touche ENT
U
Si vous ne souhaitez pas modifier la valeur, appuyez
alors sur la softkey VALEUR ACTUELLE ou fermez le
dialogue avec la touche END
Les paramètres utilisés par la TNC en interne ou dans les
cycles sont assortis de commentaires.
Si vous désirez vérifier ou modifier des paramètres locaux,
globaux ou string, appuyez sur la softkey AFFICHER
PARAMÈTRE Q QL QR QS. La TNC affiche alors tous les
paramètres correspondants ; les fonctions décrites
auparavant opèrent de la même manière.
Vous pouvez faire afficher les paramètres Q dans l'affichage d'état
supplémentaire ; ceci dans les modes manuel, manivelle électronique,
exécution séquentielle ou pas à pas et test de programme.
U
Si nécessaire, interrompre l'exécution du programme (p. ex. en
appuyant sur la touche STOP externe et sur la softkey STOP
INTERNE) ou suspendre le test du programme
U Appeler la barre des softkeys de partage d'écran
U
Sélectionner le partage d'écran avec l'affichage d'état
supplémentaire : sur la moitié droite de l'écran, la TNC
affiche le formulaire d’état Sommaire
U
Choisir la softkey ETAT PARAM. Q
U
Sélectionnez la softkey LISTE DE PARAM. Q
U
La TNC ouvre une fenêtre auxiliaire dans laquelle vous
pouvez introduire la plage souhaitée de l’affichage
des paramètres Q ou paramètres string Plusieurs
paramètres Q peuvent être introduits, séparés par
une virgule (p. ex. Q 1,2,3,4). Le domaine d'affichage
est défini avec un trait d'union (p. ex. Q 10-14)
HEIDENHAIN TNC 320
241
8.8 Fonctions spéciales
8.8 Fonctions spéciales
Résumé
Les fonctions spéciales apparaissent si vous appuyez sur la softkey
FONCTIONS SPECIALES. La TNC affiche les softkeys suivantes :
Fonction
Softkey
Page
FN 14: ERROR
Emission de messages d'erreur
Page 243
FN 16: F-PRINT
Emission formatée de textes ou
paramètres Q
Page 248
FN 18 : SYS-DATUM READ
Lecture des données-système
Page 252
FN 19 : PLC
Transmission de valeurs au PLC
Page 262
FN 20 : WAIT FOR
Synchronisation CN et PLC
Page 262
FN 29 : PLC
Transmission de huit valeurs max. au
PLC
Page 263
Page 263
FN 37 : EXPORT
Exporter des paramètres locaux Q ou
des paramètres QS vers un
programme appelant
Page 264
Page 264
242
Programmation : Paramètres Q
8.8 Fonctions spéciales
FN 14: ERROR: Emission de messages d'erreur
La fonction FN 14: ERROR permet de programmer l'émission de
messages d'erreur définis par le constructeur de la machine ou par
HEIDENHAIN : lorsque la TNC rencontre une séquence avec FN 14
pendant l'exécution ou le test du programme, elle s'interrompt et
délivre alors un message d'erreur. Vous devez ensuite relancer le
programme. Codes d'erreur : voir tableau ci-dessous.
Plage de codes d'erreur
Dialogue standard
0 ... 999
Dialogue dépendant de la machine
1000 ... 1199
Messages d'erreur internes (voir
tableau de droite)
Exemple de séquence CN
La TNC doit délivrer un message mémorisé sous le code d'erreur 254
180 FN 14: ERROR = 254
Message d'erreur réservé par HEIDENHAIN
Code d'erreur
Texte
1000
Broche?
1001
Axe d'outil manque
1002
Rayon d'outil trop petit
1003
Rayon outil trop grand
1004
Plage dépassée
1005
Position initiale erronée
1006
ROTATION non autorisée
1007
FACTEUR ECHELLE non autorisé
1008
IMAGE MIROIR non autorisée
1009
Décalage non autorisé
1010
Avance manque
1011
Valeur introduite erronée
1012
Signe erroné
1013
Angle non autorisé
1014
Point de palpage inaccessible
1015
Trop de points
1016
Introduction contradictoire
HEIDENHAIN TNC 320
243
8.8 Fonctions spéciales
Code d'erreur
Texte
1017
CYCLE incomplet
1018
Plan mal défini
1019
Axe programmé incorrect
1020
Vitesse broche erronée
1021
Correction rayon non définie
1022
Arrondi non défini
1023
Rayon d'arrondi trop grand
1024
Départ progr. non défini
1025
Imbrication trop élevée
1026
Référence angulaire manque
1027
Aucun cycle d'usinage défini
1028
Largeur rainure trop petite
1029
Poche trop petite
1030
Q202 non défini
1031
Q205 non défini
1032
Q218 doit être supérieur à Q219
1033
CYCL 210 non autorisé
1034
CYCL 211 non autorisé
1035
Q220 trop grand
1036
Q222 doit être supérieur à Q223
1037
Q244 doit être supérieur à 0
1038
Q245 doit être différent de Q246
1039
Introduire plage angul. < 360°
1040
Q223 doit être supérieur à Q222
1041
Q214: 0 non autorisé
244
Programmation : Paramètres Q
Texte
1042
Sens du déplacement non défini
1043
Aucun tableau points zéro actif
1044
Erreur position : centre 1er axe
1045
Erreur position : centre 2ème axe
1046
Diamètre du trou trop petit
1047
Diamètre du trou trop grand
1048
Diamètre du tenon trop petit
1049
Diamètre du tenon trop grand
1050
Poche trop petite : réusiner 1.A.
1051
Poche trop petite : réusiner 2.A
1052
Poche trop grande : rebut 1.A.
1053
Poche trop grande : rebut 2.A.
1054
Tenon trop petit : rebut 1.A.
1055
Tenon trop petit : rebut 2.A.
1056
Tenon trop grand : réusiner 1.A.
1057
Tenon trop grand : réusiner 2.A.
1058
TCHPROBE 425 : erreur cote max.
1059
TCHPROBE 425 : erreur cote min.
1060
TCHPROBE 426 : erreur cote max.
1061
TCHPROBE 426 : erreur cote min.
1062
TCHPROBE 430 : diam. trop grand
1063
TCHPROBE 430 : diam. trop petit
1064
Axe de mesure non défini
1065
Tolérance rupture outil dépassée
1066
Introduire Q247 différent de 0
1067
Introduire Q247 supérieur à 5
1068
Tableau points zéro?
1069
Introduire type de fraisage Q351 diff. de 0
1070
Diminuer profondeur filetage
HEIDENHAIN TNC 320
8.8 Fonctions spéciales
Code d'erreur
245
8.8 Fonctions spéciales
Code d'erreur
Texte
1071
Exécuter l'étalonnage
1072
Tolérance dépassée
1073
Amorce de séquence active
1074
ORIENTATION non autorisée
1075
3DROT non autorisée
1076
Activer 3DROT
1077
Introduire profondeur en négatif
1078
Q303 non défini dans cycle de mesure!
1079
Axe d'outil non autorisé
1080
Valeurs calculées incorrectes
1081
Points de mesure contradictoires
1082
Hauteur de sécurité incorrecte
1083
Mode de plongée contradictoire
1084
Cycle d'usinage non autorisé
1085
Ligne protégée à l'écriture
1086
Surép. supérieure à profondeur
1087
Aucun angle de pointe défini
1088
Données contradictoires
1089
Position de rainure 0 interdite
1090
Introduire passe différente de 0
1091
Commutation Q399 non autorisée
1092
Outil non défini
1093
Numéro d'outil interdit
1094
Nom d'outil interdit
1095
Option de logiciel inactive
1096
Restauration cinématique impossible
1097
Fonction non autorisée
1098
Dimensions pièce brute contradictoires
1099
Position de mesure non autorisée
246
Programmation : Paramètres Q
Texte
1100
Accès à cinématique impossible
1101
Pos. mesure hors domaine course
1102
Compensation Preset impossible
1103
Rayon outil trop grand
1104
Mode de plongée impossible
1105
Angle de plongée mal défini
1106
Angle d'ouverture non défini
1107
Largeur rainure trop grande
1108
Facteurs échelle inégaux
1109
Données d'outils inconsistantes
HEIDENHAIN TNC 320
8.8 Fonctions spéciales
Code d'erreur
247
8.8 Fonctions spéciales
FN 16: F-PRINT : émission formatée de textes et
valeurs de paramètres Q
Avec FN 16 et également à partir du programme CN, vous
pouvez aussi afficher à l'écran les messages de votre
choix. De tels messages sont affichés par la TNC dans une
fenêtre auxiliaire.
Avec la fonction FN 16: F-PRINT, vous pouvez émettre de manière
formatée les valeurs des paramètres Q et les textes via l'interface de
données, par ex. sur une imprimante. Quand vous mémorisez les
valeurs en interne ou que vous les transmettez à un ordinateur, la TNC
enregistre les données dans le fichier que vous définissez dans la
séquence FN 16.
Pour restituer le texte formaté et les valeurs des paramètres Q, créez
à l'aide de l'éditeur de texte de la TNC un fichier-texte dans lequel vous
définissez les formats et les paramètres Q à restituer.
Exemple de fichier-texte définissant le format d'émission :
“PROTOCOLE DE MESURE CENTRE DE GRAVITE ROUE A
GODETS“;
“DATE: %2d-%2d-%4d“,DAY,MONTH,YEAR4;
“HEURE: %2d:%2d:%2d“,HOUR,MIN,SEC;
“NOMBRE VALEURS DE MESURE: = 1“;
“X1 = %9.3LF“, Q31;
“Y1 = %9.3LF“, Q32;
“Z1 = %9.3LF“, Q33;
Pour élaborer les fichiers-texte, utilisez les fonctions de formatage
suivantes :
Caractères
spéciaux
Fonction
“...........“
Définir le format d’émission pour textes et
variables entre guillemets
%9.3LF
Définir le format pour paramètres Q :
9 chiffres au total (y compris point décimal) dont
3 chiffres après la virgule, long, Floating
(nombre décimal)
%S
Format pour variable de texte
,
Caractère de séparation entre le format
d’émission et le paramètre
;
Caractère de fin de séquence, termine une
ligne
248
Programmation : Paramètres Q
8.8 Fonctions spéciales
Pour restituer également diverses informations dans le fichier de
protocole, vous disposez des fonctions suivantes :
Mot clef
Fonction
CALL_PATH
Indique le nom du chemin d'accès du
programme CN dans lequel se trouve la
fonction FN16. Exemple : "Programme de
mesure: %S",CALL_PATH;
M_CLOSE
Ferme le fichier dans lequel vous écrivez avec
FN16. Exemple : M_CLOSE;
M_APPEND
Ajoute le procès-verbal d'une nouvelle
émission au protocole existant. Exemple :
M_APPEND;
ALL_DISPLAY
Restituer les valeurs des paramètres Q
indépendamment de la config MM/INCH de la
fonction MOD
MM_DISPLAY
Restituer les valeurs des paramètres Q en MM
si l'affichage MM est configuré dans la
fonction MOD
INCH_DISPLAY
Restituer les valeurs des paramètres Q en
INCH si l'affichage INCH est configuré dans la
fonction MOD
L_ENGLISH
Restituer texte seulement avec dial. anglais
L_GERMAN
Restituer texte seulement avec dial. allemand
L_CZECH
Restituer texte seulement avec dial. tchèque
L_FRENCH
Restituer texte seulement avec dial. français
L_ITALIAN
Restituer texte seulement avec dial. italien
L_SPANISH
Restituer texte seulement avec dial. espagnol
L_SWEDISH
Restituer texte seulement avec dial. suédois
L_DANISH
Restituer texte seulement avec dial. danois
L_FINNISH
Restituer texte seulement avec dial. finnois
L_DUTCH
Restituer texte seulement avec dial.
néerlandais
L_POLISH
Restituer texte seulement avec dial. polonais
L_PORTUGUE
Restituer texte seulement avec dial. portugais
L_HUNGARIA
Restituer texte seulement avec dial. hongrois
L_RUSSIAN
Restituer texte seulement avec dial. russe
L_SLOVENIAN
Restituer texte seulement avec dial. slovène
HEIDENHAIN TNC 320
249
8.8 Fonctions spéciales
Mot clef
Fonction
L_ALL
Restituer texte quel que soit le dialogue
HOUR
Nombre d'heures du temps réel
MIN
Nombre de minutes du temps réel
SEC
Nombre de secondes du temps réel
DAY
Jour du temps réel
MONTH
Mois sous forme de nombre du temps réel
STR_MONTH
Mois sous forme de symbole du temps réel
YEAR2
Année à 2 chiffres du temps réel
YEAR4
Année à 4 chiffres du temps réel
Dans le programme d’usinage, vous programmez FN16: F-PRINT
pour activer l’émission :
96 FN 16:
F-PRINT TNC:\MASQUE\MASQUE1.A/RS232:\PROT1.A
La TNC restitue alors le fichier PROT1.A via l'interface série :
PROTOCOLE DE MESURE CENTRE DE GRAVITE ROUE A GODETS
DATE : 27:11:2001
HEURE : 08:56:34
NOMBRE VALEURS MESURE : = 1
X1 = 149,360
Y1 = 25,509
Z1 = 37,000
250
Programmation : Paramètres Q
8.8 Fonctions spéciales
La fonction FN 16 écrase par défaut les fichiers de
protocoles déjà existants ou portant le même nom.
Utilisez M_APPEND lorsque vous souhaitez ajouter un
nouveau protocole au protocole existant lors d'une
nouvelle restitution.
Si vous utilisez FN 16 plusieurs fois dans le programme, la
TNC mémorise tous les textes dans le fichier que vous
avez défini dans fonction FN 16. La restitution du fichier
n'est réalisée que lorsque la TNC lit la séquence END PGM,
lorsque vous appuyez sur la touche Stop CN ou lorsque
vous fermez le fichier avec M_CLOSE.
Dans la séquence FN16, programmer le fichier de format et
le fichier de protocole avec l'extension.
Si vous n'indiquez que le nom du fichier pour le chemin
d'accès au fichier de protocole, la TNC mémorise celui-ci
dans le répertoire dans lequel se trouve le programme CN
contenant la fonction FN 16.
Vous pouvez restituer jusqu'à 32 paramètres Q par ligne
dans le fichier de description du format.
Afficher des messages dans l'écran
Vous pouvez aussi utiliser la fonction FN 16 pour afficher, à partir du
programme CN, les messages de votre choix dans une fenêtre
auxiliaire de l'écran de la TNC. On peut ainsi afficher très simplement
et à n'importe quel endroit du programme des textes d'assistance de
manière à ce que l'opérateur puissent réagir. Vous pouvez aussi
restituer le contenu de paramètres Q si le fichier de description du
protocole comporte les instructions correspondantes.
Pour que le message s'affiche dans l'écran de la TNC, il vous suffit
d'introduire SCREEN : pour le nom du fichier-protocole.
96 FN 16:
F-PRINT TNC:\MASQUE\MASQUE1.A/SCREEN:
Si le message comporte davantage de lignes que ne peut en afficher
la fenêtre auxiliaire, vous pouvez feuilleter dans cette dernière à l'aide
des touches du curseur.
Pour fermer la fenêtre auxiliaire : appuyer sur la touche CE. Pour
programmer la fermeture de la fenêtre , introduire la séquence CN
suivante :
96 FN 16:
F-PRINT TNC:\MASQUE\MASQUE1.A/SCLR:
HEIDENHAIN TNC 320
251
8.8 Fonctions spéciales
Toutes les conventions décrites précédemment sont
valables pour le fichier du description de protocole.
Dans le programme, si vous délivrez plusieurs fois des
textes à l'écran, la TNC ajoute tous les textes aux textes
déjà présents. Pour afficher chaque texte
individuellement, programmez la fonction M_CLOSE à la fin
du fichier de description du protocole.
Emission externe de messages
Vous pouvez aussi utiliser la fonction FN 16 pour mémoriser
également sur un support externe les fichiers des programmes CN
générés avec FN 16. Pour cela, il existe deux possibilités :
Indiquer le nom complet du chemin d'accès dans la fonction FN 16 :
96 FN 16:
F-PRINT TNC:\MSQ\MSQ1.A / PC325:\LOG\PRO1.TXT
Définir le nom du chemin d'accès dans la fonction MOD sous Print
ou Print-Test si vous désirez mémoriser vos données toujours dans
le même répertoire du serveur :
96 FN 16:
F-PRINT TNC:\MSQ\MSQ1.A / PRO1.TXT
Toutes les conventions décrites précédemment sont
valables pour le fichier du description de protocole.
Dans le programme, si vous délivrez plusieurs fois le
même fichier, la TNC ajoute tous les textes dans le fichiercible à la suite des textes déjà présents.
FN 18: SYS-DATUM READ
Avec la fonction FN 18: SYS-DATUM READ, vous pouvez lire les donnéessystème et les mémoriser dans les paramètres Q. La sélection de la
donnée-système a lieu à l'aide d'un numéro de groupe (ID-Nr.), d'un
numéro et, le cas échéant, d'un indice.
Nom du groupe, nr ID.
Numéro
Indice
Signification
Infos programme, 10
3
-
Numéro du cycle d’usinage actif
103
Numéro du
paramètre Q
En rapport avec les cycles CN ; pour demander si le
paramètre Q indiqué sous IDX a été suffisamment
explicite dans le CYCL DEF correspondant.
1
-
Label auquel on saute avec M2/M30 au lieu de
terminer le programme actuel; valeur = 0 : M2/M30
agit normalement
Adresses de saut système, 13
252
Programmation : Paramètres Q
Numéro
Indice
Signification
2
-
Label auquel on saute avec FN14 : ERROR avec
réaction NC-CANCEL, au lieu d’interrompre le
programme avec une erreur. Le numéro d’erreur
programmé dans l’instruction FN14 peut être lu sous
ID992 NR14.
Valeur = 0 : FN14 agit normalement.
3
-
Label auquel on saute lors d’une erreur serveur
interne (SQL, PLC, CFG) au lieu d’interrompre le
programme avec une erreur.
Valeur = 0 : l'erreur serveur agit normalement.
1
-
Numéro d’outil actif
2
-
Numéro d'outil préparé
3
-
Axe d'outil actif
0=X, 1=Y, 2=Z, 6=U, 7=V, 8=W
4
-
Vitesse de rotation broche programmée
5
-
Etat broche actif : -1=non défini, 0=M3 actif,
1=M4 active, 2=M5 après M3, 3=M5 après M4
7
-
Gamme de broche
8
-
Arrosage : 0=non 1=oui
9
-
Avance active
10
-
Indice de l'outil préparé
11
-
Indice de l'outil courant
Données du canal, 25
1
-
Numéro de canal
Paramètre de cycle, 30
1
-
Distance d'approche du cycle d'usinage courant
2
-
Profondeur perçage/fraisage du cycle d'usinage
courant
3
-
Profondeur de passe du cycle d'usinage courant
4
-
Avance plongée en profondeur du cycle d’usinage
courant
5
-
Premier côté du cycle poche rectangulaire
6
-
Deuxième côté du cycle poche rectangulaire
7
-
Premier côté du cycle rainurage
8
-
Deuxième côté du cycle rainurage
9
-
Rayon cycle de la Poche circulaire
10
-
Avance fraisage du cycle d'usinage actif
Etat de la machine, 20
HEIDENHAIN TNC 320
253
8.8 Fonctions spéciales
Nom du groupe, nr ID.
8.8 Fonctions spéciales
Nom du groupe, nr ID.
Numéro
Indice
Signification
11
-
Sens de rotation du cycle d'usinage actif
12
-
Temporisation du cycle d'usinage actif
13
-
Pas de vis cycle 17, 18
14
-
Surépaisseur de finition du cycle d'usinage courant
15
-
Angle d'évidement du cycle d'usinage courant
21
-
Angle de palpage
22
-
Course de palpage
23
-
Avance de palpage
Etat modal, 35
1
-
Cotation :
0 = absolue (G90)
1 = incrémentale (G91)
Données des tableaux SQL, 40
1
-
Code-résultat de la dernière instruction SQL
Données issues du tableau
d'outils, 50
1
Nr OUT.
Longueur d'outil
2
Nr. OUT.
Rayon d'outil
3
Nr. OUT.
Rayon d'outil R2
4
Nr. OUT.
Surépaisseur longueur d'outil DL
5
Nr. OUT.
Surépaisseur rayon d'outil DR
6
Nr. OUT.
Surépaisseur rayon d'outil DR2
7
Nr. OUT.
Outil bloqué (0 ou 1)
8
Nr. OUT.
Numéro de l'outil jumeau
9
Nr. OUT.
Durée d'utilisation max.TIME1
10
Nr. OUT.
Durée d'utilisation max. TIME2
11
Nr. OUT.
Durée d'utilisation actuelle CUR. TIME
12
Nr. OUT.
Etat PLC
13
Nr. OUT.
Longueur max. de la dent LCUTS
14
Nr. OUT.
Angle de plongée max. ANGLE
15
Nr. OUT.
TT : nombre de dents CUT
16
Nr. OUT.
TT : tolérance d'usure longueur LTOL
17
Nr. OUT.
TT : tolérance d'usure rayon RTOL
18
Nr. OUT.
TT : sens de rotation DIRECT (0=positif/-1=négatif)
254
Programmation : Paramètres Q
Données issues du tableau
d'emplacements, 51
Numéro d'emplacement d'un
outil dans le tableau d'outils, 52
Valeurs programmées
directement après TOOL CALL,
60
HEIDENHAIN TNC 320
Numéro
Indice
Signification
19
Nr. OUT.
TT : décalage plan R-OFFS
20
Nr. OUT.
TT : décalage longueur L-OFFS
21
Nr. OUT.
TT : tolérance de rupture longueur LBREAK
22
Nr. OUT.
TT : tolérance de rupture rayon RBREAK
23
Nr. OUT.
Valeur PLC
24
Nr. OUT.
Décalage du palpeur dans l'axe principal CAL-OF1
25
Nr. OUT.
Décalage du palpeur dans l'axe secondaire CAL-OF2
26
Nr. OUT.
Angle de broche lors de l'étalonnage CAL-ANG
27
Nr. OUT.
Type d'outil pour tableau d'emplacements
28
Nr. OUT.
Vitesse de rotation max. NMAX
1
Nr. emplac.
Numéro d'outil
2
Nr. emplac.
Outil spécial : 0=non, 1=oui
3
Nr. emplac.
Emplacement fixe : 0=non, 1=oui
4
Nr. emplac.
Emplacement bloqué : 0= non, 1=oui
5
Nr. emplac.
Etat PLC
1
Nr. OUT.
Numéro d'emplacement
2
Nr. OUT.
Numéro du magasin d’outils
1
-
Numéro d'outil T
2
-
Axe d'outil actif
0=X6=U
1=Y7=V
2=Z8=W
3
-
Vitesse de broche S
4
-
Surépaisseur longueur d'outil DL
5
-
Surépaisseur rayon d'outil DR
6
-
TOOL CALL automatique
0 = oui, 1 = non
255
8.8 Fonctions spéciales
Nom du groupe, nr ID.
8.8 Fonctions spéciales
Nom du groupe, nr ID.
Numéro
Indice
Signification
7
-
Surépaisseur rayon d'outil DR2
8
-
Indice d'outil
9
-
Avance active
Valeurs programmées
1
directement après TOOL DEF, 61
-
Numéro d'outil T
2
-
Longueur
3
-
Rayon
4
-
Indice
5
-
Données d’outils programmées dans TOOL DEF
1 = oui, 0 = non
1
1 = sans
surépaisseur
2 = avec
surépaisseur
3 = avec
surépaisseur et
surépaisseur dans
TOOL CALL
Rayon actif
2
1 = sans
surépaisseur
2 = avec
surépaisseur
3 = avec
surépaisseur et
surépaisseur issue
de TOOL CALL
Longueur active
3
1 = sans
surépaisseur
2 = avec
surépaisseur
3 = avec
surépaisseur et
surépaisseur issue
de TOOL CALL
Rayon d'arrondi R2
1
-
Rotation de base en mode Manuel
2
-
Rotation programmée avec cycle 10
3
-
Axe réfléchi actif
Correction d'outil active, 200
Transformations actives, 210
0 : image miroir inactive
+1 : axe X réfléchi
+2 : axe Y réfléchi
256
Programmation : Paramètres Q
Numéro
Indice
8.8 Fonctions spéciales
Nom du groupe, nr ID.
Signification
+4 : axe Z réfléchi
+64 : axe U réfléchi
+128 : axe V réfléchi
+256 : axe W réfléchi
Combinaisons = somme des différents axes
Décalage du point zéro actif, 220
Zone de déplacement, 230
HEIDENHAIN TNC 320
4
1
Facteur échelle actif axe X
4
2
Facteur échelle actif axe Y
4
3
Facteur échelle actif axe Z
4
7
Facteur échelle actif axe U
4
8
Facteur échelle actif axe V
4
9
Facteur échelle actif axe W
5
1
ROT. 3D axe A
5
2
ROT. 3D axe B
5
3
ROT. 3D axe C
6
-
Inclinaison du plan d'usinage active/inact. (-1/0) dans
un mode Exécution de programme
7
-
Inclinaison du plan d'usinage active/inact. (-1/0) dans
un mode Manuel
2
1
Axe X
2
Axe Y
3
Axe Z
4
Axe A
5
Axe B
6
Axe C
7
Axe U
8
Axe V
9
Axe W
2
1à9
Fin de course logiciel négatif des axes 1 à 9
3
1à9
Fin de course logiciel positif des axes 1 à 9
5
-
Fin de course logiciel activé ou désactivé :
(0 = act., 1 = inact.)
257
8.8 Fonctions spéciales
Nom du groupe, nr ID.
Numéro
Indice
Signification
Position nominale dans système
REF, 240
1
1
Axe X
2
Axe Y
3
Axe Z
4
Axe A
5
Axe B
6
Axe C
7
Axe U
8
Axe V
9
Axe W
1
Axe X
2
Axe Y
3
Axe Z
4
Axe A
5
Axe B
6
Axe C
7
Axe U
8
Axe V
9
Axe W
1
Type de palpeur
2
Ligne dans le tableau des palpeurs
51
-
Longueur active
52
1
Rayon actif de bille
2
Rayon d'arrondi
1
Décalage centre (axe principal)
2
Décalage centre (axe secondaire)
54
-
Angle de l’orientation broche en degrés (décalage
centre)
55
1
Avance rapide
2
Avance de mesure
Position actuelle dans le système
de coordonnées actif, 270
Palpeur à commutation TS, 350
1
50
53
258
Programmation : Paramètres Q
Palpeur de table TT
Numéro
Indice
Signification
56
1
Course de mesure max.
2
Distance d'approche
57
1
Ligne dans le tableau des palpeurs
70
1
Type de palpeur
2
Ligne dans le tableau des palpeurs
1
Centre axe principal (système REF)
2
Centre axe secondaire (système REF)
3
Centre axe d'outil (système REF)
72
-
Rayon plateau
75
1
Avance rapide
2
Avance de mesure avec broche à l'arrêt
3
Avance de mesure avec broche en rotation
1
Course de mesure max.
2
Distance d'approche pour mesure de longueur
3
Distance d'approche pour mesure de rayon
77
-
Vitesse de rotation broche
78
-
Sens du palpage
1
1à9
(X, Y, Z, A, B, C, U, V,
W)
Dernier point d'origine d’un cycle de palpage manuel
ou dernier point de palpage issu du cycle 0 sans
correction de longueur mais avec correction de rayon
du palpeur (système de coordonnées pièce)
2
1à9
(X, Y, Z, A, B, C, U, V,
W)
Dernier point d'origine d’un cycle de palpage manuel
ou dernier point de palpage issu du cycle 0 sans
correction de longueur du palpeur ni de rayon
(système de coordonnées machine)
3
1à9
(X, Y, Z, A, B, C, U, V,
W)
Résultat de la mesure des cycles palpeurs 0 et 1 sans
correction de rayon et de longueur du palpeur
4
1à9
(X, Y, Z, A, B, C, U, V,
W)
Dernier point d'origine d’un cycle de palpage manuel
ou dernier point de palpage issu du cycle 0 sans
correction de longueur du palpeur ni de rayon
(système de coordonnées pièce)
10
-
Orientation broche
Ligne
Colonne
Lire les valeurs
71
76
Point de référence dans cycle
palpeur, 360
Valeur issue du tableau de points
zéro actif dans le système de
coordonnées actif, 500
HEIDENHAIN TNC 320
8.8 Fonctions spéciales
Nom du groupe, nr ID.
259
8.8 Fonctions spéciales
Nom du groupe, nr ID.
Numéro
Indice
Signification
Transfo de base, 507
Ligne
1à6
(X, Y, Z, SPA, SPB,
SPC)
Lire une transfo de base d'un Preset
Offset axe, 508
Ligne
1à9
(X_OFFS, Y_OFFS,
Z_OFFS, A_OFFS,
B_OFFS, C_OFFS,
U_OFFS, V_OFFS,
W_OFFS)
Lire offset d'axe d'un Preset
Preset actif, 530
1
-
Lire numéro de Preset actif
Lire les données de l’outil courant,
950
1
-
Longueur d'outil L
2
-
Rayon d'outil R
3
-
Rayon d'outil R2
4
-
Surépaisseur longueur d'outil DL
5
-
Surépaisseur rayon d'outil DR
6
-
Surépaisseur rayon d'outil DR2
7
-
Outil bloqué TL
0 = non bloqué, 1 = bloqué
8
-
Numéro de l'outil jumeau RT
9
-
Durée d'utilisation max.TIME1
10
-
Durée d'utilisation max. TIME2
11
-
Durée d'utilisation actuelle CUR. TIME
12
-
Etat PLC
13
-
Longueur max. de la dent LCUTS
14
-
Angle de plongée max. ANGLE
15
-
TT : nombre de dents CUT
16
-
TT : tolérance d'usure longueur LTOL
17
-
TT : tolérance d'usure rayon RTOL
18
-
TT : sens de rotation DIRECT
0 = positif, –1 = négatif
19
-
TT : décalage plan R-OFFS
20
-
TT : décalage longueur L-OFFS
21
-
TT : tolérance de rupture longueur LBREAK
260
Programmation : Paramètres Q
Cycles palpeurs, 990
Etat d’exécution, 992
Numéro
Indice
Signification
22
-
TT : tolérance de rupture rayon RBREAK
23
-
Valeur PLC
24
-
Type d’outil TYPE
0 = fraise, 21 = palpeur
27
-
Ligne correspondante dans le tableau des palpeurs
32
-
angle de pointe
34
-
Lift off
1
-
Comportement d’approche :
0 = comportement standard
1 = rayon actif, distance d’approche zéro
2
-
0 = surveillance palpeur désactivée
1 = surveillance palpeur activée
4
-
0= Tige de palpage non déviée
1= Tige de palpage déviée
10
-
Amorce de séquence active
1 = oui, 0 = non
11
-
Etape de recherche
14
-
Numéro de la dernière erreur FN14
16
-
Exécution réelle active
1 = exécution, 2 = simulation
Exemple : affecter à Q25 la valeur du facteur échelle actif de
l’axe Z
55 FN 18: SYSREAD Q25 = ID210 NR4 IDX3
HEIDENHAIN TNC 320
261
8.8 Fonctions spéciales
Nom du groupe, nr ID.
8.8 Fonctions spéciales
FN 19: PLC : transférer de valeurs au PLC
La fonction FN 19: PLC permet de transférer au PLC jusqu'à deux
valeurs numériques ou paramètres Q.
Résolution et unité de mesure : 0,1 µm ou 0,0001°
Exemple : transférer au PLC la valeur numérique 10
(correspondant à 1µm ou 0,001°)
56 FN 19: PLC=+10/+Q3
FN 20: WAIT FOR: Synchroniser CN et PLC
Vous ne devez utiliser cette fonction qu'en accord avec le
constructeur de votre machine!
Avec la fonction FN 20: WAIT FOR, vous pouvez synchroniser la CN et
le PLC pendant le déroulement du programme. La CN arrête l'usinage
jusqu'à ce que soit réalisée la condition programmée dans la séquence
FN 20-. Pour cela, la TNC peut contrôler les opérandes PLC suivants :
Opérande
PLC
Abréviation
Plage d'adresses
Marqueur
M
0 à 4999
Entrée
I
0 à 31, 128 à 152
64 à 126 (1ère PL 401 B)
192 à 254 (2ème PL 401 B)
Sortie
O
0 à 30
32 à 62 (1ère PL 401 B)
64 à 94 (2ème PL 401 B)
Compteur
C
48 à 79
Timer
T
0 à 95
Octets
B
0 à 4095
Mot
W
0 à 2047
Double mot
D
2048 à 4095
La TNC 320 possède une interface étendue pour la communication
entre le PLC et la CN. Il s’agit là d’une nouvelle interface symbolique
Aplication Programmer Interface (API). Parallèlement, l’interface
habituelle PLC-CN existe encore et peut toujours être utilisée.
L'utilisation de l’ancienne ou la nouvelle interface API TNC est
configurée par le constructeur de la machine. Introduisez le nom de
l’opérande symbolique sous forme de string pour obtenir l’état défini
de l’opérande symbolique.
262
Programmation : Paramètres Q
8.8 Fonctions spéciales
Les conditions suivantes sont autorisées dans la séquence FN 20- :
Condition
Abréviation
Egal à
==
inférieur à
<
supérieur à
>
inférieur ou égal à
<=
supérieur ou égal à
>=
Pour cela, on dispose de la fonction FN20: WAIT FOR SYNC. WAIT FOR
SYNC doit toujours être utilisée, par exemple lorsque vous importez des
données-système avec FN18 et qui nécessitent d'être synchronisées
en temps réel. La TNC stoppe alors le calcul anticipé et n'exécute la
séquence CN suivante que quand le programme CN a réellement
atteint cette séquence.
Exemple : suspendre le déroulement du programme jusqu'à ce
que le PLC initialise à 1 le marqueur 4095
32 FN 20: WAIT FOR M4095==1
Exemple : suspendre le déroulement du programme jusqu'à ce
que le PLC initialise à 1 l’opérande symbolique
32 FN20: APISPIN[0].NN_SPICONTROLINPOS==1
Exemple : suspendre le calcul anticipé interne, lire la position
actuelle de l'axe X
32 FN 20: WAIT FOR SYNC
33 FN 18: SYSREAD Q1 = ID270 NR1 IDX1
FN 29: PLC: Transférer valeurs au PLC
La fonction FN 29: PLC permet de transférer au PLC jusqu'à huit
valeurs numériques ou paramètres Q.
Résolutions et unités de mesure : 0,1 µm ou 0,0001°
Exemple : transférer au PLC la valeur numérique 10
(correspondant à 1µm ou 0,001°)
56 FN29: PLC=+10/+Q3/+Q8/+7/+1/+Q5/+Q2/+15
HEIDENHAIN TNC 320
263
8.8 Fonctions spéciales
FN37: EXPORT
Vous utilisez la fonction FN37: EXPORT si vous désirez créer vos
propres cycles et les intégrer dans la TNC. Dans les cycles, les
paramètres Q 0-99 ont uniquement un effet local. Cela signifie que les
paramètres Q n’agissent que dans le programme où ils ont été définis.
A l'aide de la fonction FN 37: EXPORT, vous pouvez exporter les
paramètres Q à effet local vers un autre programme (qui appelle).
Exemple : exporter le paramètre local Q25
56 FN37: EXPORT Q25
Exemple : exporter les paramètres locaux Q25 à Q30
56 FN37: EXPORT Q25 - Q30
La TNC exporte la valeur qui est celle du paramètre juste
au moment de l’instruction EXPORT.
Le paramètre n'est exporté que vers le programme qui
appelle immédiatement.
264
Programmation : Paramètres Q
8.9 Accès aux tableaux avec instructions SQL
8.9 Accès aux tableaux avec
instructions SQL
Introduction
Dans la TNC, vous programmez les accès aux tableaux à l'aide de
instructions SQL dans le cadre d'une transaction. Une transaction
comporte plusieurs instructions SQL qui assurent un traitement
rigoureux des entrées de tableaux.
Les tableaux sont configurés par le constructeur de la
machine. Celui-ci définit les noms et désignations dont les
instructions SQL ont besoin en tant que paramètres.
Expressions utilisées ci-après :
„ Tableau : un tableau comporte x colonnes et y lignes. Il est
enregistré sous forme de fichier dans le gestionnaire de fichiers de
la TNC et son adressage est réalisé avec le chemin d'accès et le
nom du fichier (=nom du tableau). On peut utiliser des synonymes
au lieu de l'adressage avec le chemin d'accès et le nom du fichier.
„ Colonnes : le nombre et la désignation des colonnes sont définis
lors de la configuration du tableau. Dans certaines instructions SQL,
la désignation des colonnes est utilisée pour l'adressage.
„ Lignes : le nombre de lignes est variable. Vous pouvez ajouter de
nouvelles lignes. Une numérotation des lignes n'existe pas. Mais
vous pouvez choisir (sélectionnez) des lignes en fonction du
contenu des cellules. Vous ne pouvez effacer des lignes que dans
l'éditeur de tableaux – mais pas avec le programme CN.
„ Cellule : intersection colonne/ligne.
„ Entrée de tableau : contenu d'une cellule
„ Result-set : pendant une transaction, les lignes et colonnes
sélectionnées sont gérées dans Result-set. Considérez Result-set
comme une mémoire-tampon contenant temporairement la
quantité de lignes et colonnes sélectionnées. (de l'anglais Result-set
= quantité résultante).
„ Synonyme : ce terme désigne un nom donné à un tableau et utilisé
à la place du chemin d'accès + nom de fichier. Les synonymes sont
définis par le constructeur de la machine dans les données de
configuration.
HEIDENHAIN TNC 320
265
8.9 Accès aux tableaux avec instructions SQL
Une transaction
En principe, une transaction comporte les actions suivantes :
„ Adressage du tableau (fichier), sélection des lignes et transfert dans
Result-set.
„ Lire les lignes issues de Result-set, les modifier et/ou ajouter de
nouvelles lignes.
„ Fermer la transaction. Lors des modifications/compléments de
données, les lignes issues de Result-set sont transférées dans le
tableau (fichier).
D'autres actions sont toutefois nécessaires pour que les entrées du
tableau puissent être traitées dans le programme CN et pour éviter en
parallèle une modification de lignes de tableau identiques. Il en résulte
donc le processus de transaction suivant :
1
2
3
4
Pour chaque colonne qui doit être traitée, on définit un paramètre
Q. Le paramètre Q est affecté à la colonne – Il y est „lié“ (SQL
BIND...).
Adressage du tableau (fichier), sélection des lignes et transfert
dans Result-set. Par ailleurs, vous définissez les colonnes qui
doivent être transférées dans Result-set (SQL SELECT...).
Vous pouvez verrouiller les lignes sélectionnées. Si par la suite
d'autres processus peuvent accéder à la lecture de ces lignes, ils
ne peuvent toutefois pas modifier les entrées de tableau.
Verrouillez toujours les lignes sélectionnées lorsque vous voulez
effectuer des modifications (SQL SELECT ... POUR MISE À JOUR).
Lire les lignes issues de Result-set, les modifier et/ou ajouter de
nouvelles lignes :
– Transfert d'une ligne de Result-set dans les paramètres Q de
votre programme CN (SQL FETCH...)
– Préparation de modifications dans les paramètres Q et transfert
dans une ligne de Result-set (SQL UPDATE...)
– Préparation d'une nouvelle ligne de tableau dans les paramètres
Q et transfert sous forme d'une nouvelle ligne dans Result-set (SQL
INSERT...)
Fermer la transaction.
– Des entrées de tableau ont été modifiées/complétées : les
données issues de Result-set sont transférées dans le tableau
(fichier). Elles sont maintenant mémorisées dans le fichier.
D'éventuels verrouillages sont annulés, Result-set est activé (SQL
COMMIT...).
– Des entrées de tableau n'ont pas été modifiées/complétées
(accès seulement à la lecture) : d'éventuels verrouillages sont
annulés, Result-set est activé (SQL ROLLBACK... SANS INDICE).
Vous pouvez traiter en parallèle plusieurs transactions.
Vous devez fermer impérativement une transaction qui a
été commencée – y compris si vous n'utilisez que l'accès
à la lecture. Ceci constitue le seul moyen de garantir que
les modifications/données complétées ne soient pas
perdues, que les verrouillages seront bien annulés et que
Result-set sera activé.
266
Programmation : Paramètres Q
8.9 Accès aux tableaux avec instructions SQL
Result-set
Les lignes sélectionnées à l'intérieur de Result-set sont numérotées
en débutant par 0 de manière croissante. La numérotation est
désignée par le terme indice. Pour les accès à la lecture et à l'écriture,
l'indice est affiché, permettant ainsi d'accéder directement à une ligne
de Result-set.
Il est souvent pratique de classer les lignes à l'intérieur de Result-set.
Pour cela, on définit une colonne du tableau contenant le critère du tri.
On choisit par ailleurs un ordre ascendant ou descendant (SQL SELECT
... ORDRE BY ...).
L'adressage de la ligne sélectionnée prise en compte dans Result-set
s'effectue avec HANDLE. Toutes les instructions SQL suivantes utilisent
le Handle en tant que référence à cette quantité de lignes et colonnes
sélectionnées.
Lors de la fermeture d'une transaction, le handle est à nouveau
déverrouillé (SQL COMMIT... ou SQL ROLLBACK...). Il n'est alors plus
valable.
Vous pouvez traiter simultanément plusieurs Result-sets. Le serveur
SQL attribue un nouveau Handle à chaque instruction Select.
Lier les paramètres Q aux colonnes
Le programme CN n'a pas d'accès direct aux entrées de tableau dans
Result-set. Les données doivent être transférées dans les paramètres
Q. A l'inverse, les données sont d'abord préparées dans les
paramètres Q, puis transférées dans Result-set.
Avec SQL BIND ..., vous définissez quelles colonnes du tableau
doivent être reproduites dans quels paramètres Q. Les paramètres Q
sont liés (affectés) aux colonnes. Les colonnes qui ne sont pas liées
aux paramètres Q ne sont pas prises en compte lors d'opérations de
lecture/d'écriture.
Si une nouvelle ligne de tableau est créée avec SQL INSERT..., les
colonnes non liées aux paramètres Q reçoivent des valeurs par défaut.
HEIDENHAIN TNC 320
267
8.9 Accès aux tableaux avec instructions SQL
Programmation d'instructions SQL
Vous ne pouvez programmer cette fonction que si vous
avez préalablement introduit le code 555343.
Vous programmez les instructions SQL en mode Programmation :
U
Sélectionner les fonctions SQL : appuyer sur la
softkey SQL
U
Sélectionner l'instruction SQL par softkey (voir tableau
récapitulatif) ou appuyer sur la softkey SQL EXECUTE et
programmer l'instruction SQL
Tableau récapitulatif des softkeys
Fonction
Softkey
SQL EXECUTE
Programmer l'instruction Select
SQL BIND
Lier (affecter) un paramètre Q à la colonne de tableau
SQL FETCH
Lire les lignes de tableau issues de Result-set et les
enregistrer dans les paramètres Q
SQL UPDATE
Enregistrer les données issues des paramètres Q dans
une ligne de tableau existante de Result-set
SQL INSERT
Enregistrer les données issues des paramètres Q dans
une nouvelle ligne de tableau de Result-set
SQL COMMIT
Transférer dans le tableau des lignes issues de Resultset et fermer la transaction.
SQL ROLLBACK
„ INDICE non programmé : rejeter les
modifications/données complétées précédentes et
fermer la transaction.
„ INDICE programmé : la ligne avec indice reste dans
Result-set – toutes les autres lignes dans Result-set
sont supprimées. La transaction ne sera pas fermée.
268
Programmation : Paramètres Q
8.9 Accès aux tableaux avec instructions SQL
SQL BIND
SQL BIND lie un paramètre Q à une colonne de tableau. Les instructions
SQL Fetch, Update et Insert exploitent cette liaison (affectation) lors
des transferts de données entre Result-set et le programme CN.
Une instruction SQL BIND sans nom de tableau et de colonne supprime
la liaison. La liaison se termine au plus tard à la fin du programme CN
ou du sous-programme.
„ Vous pouvez programmer autant de liaisons que vous le
souhaitez. Lors des opérations de lecture/d'écriture,
seules les colonnes qui ont été indiquées dans
l'instruction Select sont prises en compte.
„ SQL BIND... doit être programmée avant les
instructions Fetch, Update ou Insert. Vous pouvez
programmer une instruction Select sans avoir
programmé préalablement d'instructions Bind.
„ Si vous indiquez dans l'instruction Select des colonnes
pour lesquelles vous n'avez pas programmé de liaison,
une erreur sera provoquée lors des opérations de
lecture/d'écriture (interruption de programme).
U
Nr. paramètre pour résultat : paramètre Q qui sera
lié (affecté) à la colonne de tableau.
U
Banque de données : nom de colonne : introduisez le
nom du tableau et la désignation des colonnes –
séparation avec .
Nom de tableau : synonyme ou chemin d'accès et
nom de fichier de ce tableau. Le synonyme est
introduit directement – Le chemin d'accès et le nom
du fichier sont indiqués entre guillemets simples.
Désignation de colonne : désignation de la colonne
de tableau définie dans les données de configuration
HEIDENHAIN TNC 320
Exemple : Lier un paramètre Q à la colonne de
tableau
11 SQL BIND Q881 "TAB_EXAMPLE.MESU_NO"
12 SQL BIND Q882 "TAB_EXAMPLE.MESU_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESU_Y"
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
Exemple : Annuler la liaison
91 SQL BIND Q881
92 SQL BIND Q882
93 SQL BIND Q883
94 SQL BIND Q884
269
8.9 Accès aux tableaux avec instructions SQL
SQL SELECT
SQL SELECT sélectionne des lignes du tableau et les transfère dans
Result-set.
Le serveur SQL classe les données ligne par ligne dans Result-set. Les
lignes sont numérotées en commençant par 0, de manière continue.
Ce numéro de ligne, l'INDICE est utilisé dans les instructions SQL
Fetch et Update.
Dans la fonction SQL SELECT...WHERE..., introduisez le critère de
sélection. Ceci vous permet de limiter le nombre de lignes à
transférer. Si vous n'utilisez pas cette option, toutes les lignes du
tableau seront chargées.
Dans la fonction SQL SELECT...ORDER BY..., introduisez le critère de
tri. Il comporte la désignation de colonne et le code de tri
croissant/décroissant. Si vous n'utilisez pas cette option, les lignes
seront mises dans un ordre aléatoire.
Avec la fonction SQL SELCT...FOR UPDATE, vous verrouillez les lignes
sélectionnées pour d'autres applications. D'autres applications
peuvent lire ces lignes mais pas les modifier. Vous devez
impérativement utiliser cette option si vous procédez à des
modifications sur les entrées de tableau.
Result set vide : si Result-set ne comporte aucune ligne
correspondant au critère de sélection, le serveur SQL restitue un
Handle valide sans aucune entrée de tableau.
270
Programmation : Paramètres Q
U
Nr. paramètre pour résultat : Paramètre Q pour le
handle. Le serveur SQL fournit le handle pour ce
groupe lignes/colonnes sélectionné avec l'instruction
Select en cours.
En cas d'erreur (si le marquage n'a pas pu être
exécuté), le serveur SQL restitue 1.
La valeur 0 désigne un handle non valide.
Exemple : Sélectionner toutes les lignes du
tableau
Banque de données: Texte de commande SQL: Avec les
éléments suivants:
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
„ SELECT (code) :
Indicatif de l'instruction SQL, désignations des
colonnes de tableau à transférer (plusieurs
colonnes séparées par ,), (voir exemples). Les
paramètres Q doivent être liés pour toutes les
colonnes indiquées ici.
„ FROM Nom de tableau :
Synonyme ou chemin d'accès et nom de fichier de
ce tableau. Le synonyme est introduit directement
– Le chemin d'accès et le nom du tableau sont
indiqués entre guillemets simples (voir exemples).
Les paramètres Q doivent être liés pour toutes les
colonnes indiquées ici.
„ En option :
WHERE Critères de sélection :
Un critère de sélection est constitué de la
désignation de colonne, de la condition (voir
tableau) et de la valeur comparative. Pour lier
plusieurs critères de sélection, utilisez les
opérateurs ET ou OU. Programmez la valeur
comparative soit directement, soit dans un
paramètre Q. Un paramètre Q commence par : et il
est mis entre guillemets simples (voir exemple)
„ En option :
ORDER BY Désignation de colonne ASC pour tri
croissant ou
ORDER BY Désignation de colonne DESC pour tri
décroissant
Si vous ne programmez ni ASC ni DESC, le tri
croissant est utilisé par défaut. La TNC classe les
lignes sélectionnées dans la colonne indiquée
„ En option :
FOR UPDATE (code) :
Les lignes sélectionnées sont verrouillées pour
l'accès à l'écriture d'autres applications
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM TAB_EXAMPLE"
HEIDENHAIN TNC 320
11 SQL BIND Q881 "TAB_EXAMPLE.MESU_NO"
12 SQL BIND Q882 "TAB_EXAMPLE.MESU_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESU_Y"
. . .
Exemple : Sélection des lignes du tableau avec la
fonction WHERE
. . .
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM TAB_EXAMPLE WHERE MESU_NO<20"
Exemple : Sélection des lignes du tableau avec la
fonction WHERE et paramètre Q
. . .
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM TAB_EXAMPLE" WHERE
MESU_NO==:’Q11’"
Exemple : Nom de tableau défini avec chemin
d'accès et nom de fichier
. . .
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM ’V:\TABLE\TAB_EXAMPLE’ WHERE
MESU_NO<20"
271
8.9 Accès aux tableaux avec instructions SQL
U
8.9 Accès aux tableaux avec instructions SQL
Condition
Programmation
égal à
=
==
différent de
!=
<>
inférieur à
<
inférieur ou égal à
<=
supérieur à
>
supérieur ou égal à
>=
Combiner plusieurs conditions :
ET logique
AND
OU logique
OR
272
Programmation : Paramètres Q
8.9 Accès aux tableaux avec instructions SQL
SQL FETCH
SQL FETCH lit la ligne adressée avec l'INDICE issue de Result-set et
enregistre les entrées de tableau dans les paramètres Q liés
(affectés). Result-set est adressé avec le HANDLE.
SQL FETCH tient compte de toutes les colonnes indiquées dans
l'instruction Select.
U
U
U
Nr. de paramètre pour résultat: Paramètre Q dans
lequel le serveur SQL acquitte le résultat:
0 : aucune erreur constatée
1 : erreur constatée (mauvais handle ou indice trop
élevé)
Banque de données : réf. accès SQL: Paramètre Q
avec le handle pour l'identification de Result-set (voir
également SQL SELECT).
Banque de données : Indice du résultat SQL:
Numéro de ligne à l'intérieur de Result-set. Les
entrées de tableau de cette ligne sont lues et
transférées vers les paramètres Q liés. Si vous
n'indiquez pas l'indice, la première ligne (n=0) sera
lue.
Inscrivez directement le numéro de ligne ou bien
programmez le paramètre Q contenant l'indice.
HEIDENHAIN TNC 320
Exemple : Le numéro de ligne est transmis au
paramètre Q
11 SQL BIND Q881 "TAB_EXAMPLE.MESU_NO"
12 SQL BIND Q882 "TAB_EXAMPLE.MESU_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESU_Y"
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
. . .
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM TAB_EXAMPLE"
. . .
30 SQL FETCH Q1 HANDLE Q5 INDEX+Q2
Exemple : Le numéro de ligne est programmé
directement
. . .
30 SQL FETCH Q1 HANDLE Q5 INDEX5
273
8.9 Accès aux tableaux avec instructions SQL
SQL UPDATE
SQL UPDATE transfère les données préparées dans les paramètres Q
dans la ligne adressée avec INDICE de Result-set. La ligne présente
dans Result-set est écrasée intégralement.
SQL UPDATE tient compte de toutes les colonnes indiquées dans
l'instruction Select.
U
U
U
Exemple : Le numéro de ligne est transmis au
paramètre Q
11 SQL BIND Q881 "TAB_EXAMPLE.MESU_NO"
12 SQL BIND Q882 "TAB_EXAMPLE.MESU_X"
Nr. de paramètre pour résultat: Paramètre Q dans
lequel le serveur SQL acquitte le résultat :
0 : aucune erreur constatée
1: erreur constatée (mauvais handle, indice trop
élevé, dépassement en plus/en moins de la plage de
valeurs ou format de données incorrect)
13 SQL BIND Q883 "TAB_EXAMPLE.MESU_Y"
Banque de données : réf. accès SQL: Paramètre Q
avec le handle pour l'identification de Result-set (voir
également SQL SELECT).
. . .
Banque de données : Indice du résultat SQL:
Numéro de ligne à l'intérieur de Result-set. Les
entrées de tableau préparées dans les paramètres Q
sont écrites sur cette ligne. Si vous n'indiquez pas
l'indice, la première ligne (n=0) sera écrite.
Inscrivez directement le numéro de ligne ou bien
programmez le paramètre Q contenant l'indice.
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
. . .
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM TAB_EXAMPLE"
30 SQL FETCH Q1 HANDLE Q5 INDEX+Q2
. . .
40 SQL UPDATE Q1 HANDLE Q5 INDEX+Q2
Exemple : Le numéro de ligne est programmé
directement
. . .
40 SQL UPDATE Q1 HANDLE Q5 INDEX5
SQL INSERT
SQL INSERT génère une nouvelle ligne dans Result-set et transfère
dans la nouvelle ligne les données préparées dans les paramètres Q
SQL INSERT tient compte de toutes les colonnes qui ont été indiquées
dans l'instruction Select – Les colonnes de tableau dont n'a pas tenu
compte l'instruction Select reçoivent des valeurs par défaut.
U
U
274
Exemple : Le numéro de ligne est transmis au
paramètre Q
11 SQL BIND Q881 "TAB_EXAMPLE.MESU_NO"
12 SQL BIND Q882 "TAB_EXAMPLE.MESU_X"
Nr. de paramètre pour résultat: Paramètre Q dans
lequel le serveur SQL acquitte le résultat :
0 : aucune erreur constatée
1 : erreur constatée (mauvais handle, dépassement
en plus/en moins de la plage de valeurs ou format de
données incorrect)
13 SQL BIND Q883 "TAB_EXAMPLE.MESU_Y"
Banque de données : réf. accès SQL: Paramètre Q
avec le handle pour l'identification de Result-set (voir
également SQL SELECT).
. . .
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
. . .
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM TAB_EXAMPLE"
40 SQL INSERT Q1 HANDLE Q5
Programmation : Paramètres Q
8.9 Accès aux tableaux avec instructions SQL
SQL COMMIT
SQL COMMIT retransfère dans le tableau toutes les lignes présentes
dans Result-set. Un verrouillage mis avec SELCT...FOR UPDATE est
supprimé.
Le handle attribué lors de l'instruction SQL SELECT perd sa validité.
U
U
Exemple :
11 SQL BIND Q881 "TAB_EXAMPLE.MESU_NO"
12 SQL BIND Q882 "TAB_EXAMPLE.MESU_X"
Nr. de paramètre pour résultat: Paramètre Q dans
lequel le serveur SQL acquitte le résultat :
0 : aucune erreur constatée
1: erreur constatée (mauvais handle ou entrées
identiques dans des colonnes qui réclament des
entrées sans ambiguïté.)
13 SQL BIND Q883 "TAB_EXAMPLE.MESU_Y"
Banque de données : réf. accès SQL: Paramètre Q
avec le handle d'identification du Result set (voir
également SQL SELECT).
. . .
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
. . .
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM TAB_EXAMPLE"
30 SQL FETCH Q1 HANDLE Q5 INDEX+Q2
. . .
40 SQL UPDATE Q1 HANDLE Q5 INDEX+Q2
. . .
50 SQL COMMIT Q1 HANDLE Q5
SQL ROLLBACK
L'exécution de l'instruction SQL ROLLBACK dépend de la programmation
ou non de l'INDICE :
„ INDICE non programmé : Result set ne sera pas retranscrit dans le
tableau (d'éventuelles modifications/données complétées seront
perdues). La transaction est fermée – Le handle attribué lors de
l'instruction SQL SELECT perd sa validité. Application classique : vous
fermez une transaction avec accès exclusivement à la lecture.
„ INDICE programmé : la ligne avec indice demeure – Toutes les
autres lignes sont supprimées de Result-set. La transaction ne sera
pas fermée. Un verrouillage mis avec SELCT...FOR UPDATE reste mis
pour la ligne avec indice – Il est supprimé pour toutes les autres
lignes.
U
Nr. de paramètre pour résultat: Paramètre Q dans
lequel le serveur SQL acquitte le résultat :
0 : aucune erreur constatée
1: erreur constatée (mauvais handle)
U
Banque de données : réf. accès SQL: Paramètre Q
avec le handle d'identification de Result-set (voir
également SQL SELECT).
U
Banque de données : indice résultat SQL : ligne qui
doit demeurer dans Result-set. Inscrivez directement
le numéro de ligne ou bien programmez le paramètre
Q contenant l'indice.
HEIDENHAIN TNC 320
Exemple :
11 SQL BIND Q881 "TAB_EXAMPLE.MESU_NO"
12 SQL BIND Q882 "TAB_EXAMPLE.MESU_X"
13 SQL BIND Q883 "TAB_EXAMPLE.MESU_Y"
14 SQL BIND Q884 "TAB_EXAMPLE.MESS_Z"
. . .
20 SQL Q5 "SELECT MESU_NO,MESU_X,MESU_Y,
MESU_Z FROM TAB_EXAMPLE"
. . .
30 SQL FETCH Q1 HANDLE Q5 INDEX+Q2
. . .
50 SQL ROLLBACK Q1 HANDLE Q5
275
8.10 Introduire directement une formule
8.10 Introduire directement une
formule
Introduire une formule
A l’aide des softkeys, vous pouvez introduire directement dans le
programme d'usinage des formules arithmétiques contenant
plusieurs opérations de calcul.
Les fonctions mathématiques d'opérations relationnelles s'affichent
lorsque vous appuyez sur la softkey FORMULE. La TNC affiche alors
les softkeys suivantes sur plusieurs barres :
Fonction de liaison
Softkey
Addition
Ex. Q10 = Q1 + Q5
Soustraction
Ex. Q25 = Q7 – Q108
Multiplication
Ex. Q12 = 5 * Q5
Division
Ex. Q25 = Q1 / Q2
Parenthèse ouverte
Ex. Q12 = Q1 * (Q2 + Q3)
Parenthèse fermée
Ex. Q12 = Q1 * (Q2 + Q3)
Elévation d'une valeur au carré (de l'angl. square)
Ex. Q15 = SQ 5
Extraire la racine carrée (de l'angl. square root)
Ex. Q22 = SQRT 25
Sinus d'un angle
Ex. Q44 = SIN 45
Cosinus d'un angle
Ex. Q45 = COS 45
Tangente d'un angle
Ex. Q46 = TAN 45
Arc-sinus
Fonction inverse du sinus; définir l'angle issu du
rapport de la perpendiculaire opposée à l'hypoténuse
Ex. Q10 = ASIN 0,75
276
Programmation : Paramètres Q
8.10 Introduire directement une formule
Fonction de liaison
Softkey
Arc-cosinus
Fonction inverse du cosinus; définir l'angle issu du
rapport du côté adjacent à l'hypoténuse
Ex. Q11 = ACOS Q40
Arc-tangente
Fonction inverse de la tangente; définir l'angle issu du
rapport entre perpendiculaire opposée et côté
adjacent
Ex. Q12 = ATAN Q50
Elévation de valeurs à une puissance
Ex. Q15 = 3^3
Constante Pl (3,14159)
Ex. Q15 = PI
Calcul du logarithme naturel (LN) d'un nombre
Base 2,7183
Ex. Q15 = LN Q11
Calcul du logarithme décimal d'un nombre,
base 10
Ex. Q33 = LOG Q22
Fonction exponentielle, 2,7183 puissance n
Ex. Q1 = EXP Q12
Inversion de la valeur (multiplication par -1)
Ex. Q2 = NEG Q1
Valeur entière
Calcul d'un nombre entier
Ex. Q3 = INT Q42
Calcul de la valeur absolue d'un nombre
Ex. Q4 = ABS Q22
Partie décimale d'un nombre décimal
Fractionner
Ex. Q5 = FRAC Q23
Vérifier le signe d'un nombre
Ex. Q12 = SGN Q50
Si valeur de consigne Q12 = 1, alors Q50 >= 0
Si valeur de renvoi Q12 = -1, alors Q50 < 0
Valeur modulo (reste de division)
z.B. Q12 = 400 % 360
Résultat : Q12 = 40
HEIDENHAIN TNC 320
277
8.10 Introduire directement une formule
Règles de calculs
Pour la programmation de formules mathématiques, les règles
suivantes s'appliquent :
Convention de calcul
12
Q1 = 5 * 3 + 2 * 10 = 35
1ère étape : 5 * 3 = 15
2èmeétape 2 * 10 = 20
3 ème étape : 15 + 20 = 35
ou
13
Q2 = SQ 10 - 3^3 = 73
1ère étape : élévation au carré de 10 = 100
2ème étape : 3 puissance 3 = 27
2èmeétape 2 * 10 = 20
Distributivité
Règle pour calculs entre parenthèses
a * (b + c) = a * b + a * c
278
Programmation : Paramètres Q
8.10 Introduire directement une formule
Exemple d'introduction
Calculer un angle avec la fonction arctan avec la perpendiculaire (Q12)
et le côté adjacent (Q13) ; affecter le résultat à Q25 :
Introduire la formule : appuyer sur la touche Q et sur
la softkey FORMULE ou utilisez l'accès rapide :
Appuyer sur la touche Q du clavier ASCII
NR. PARAMÈTRE POUR RÉSULTAT ?
25
Introduire le numéro du paramètre
Commuter à nouveau la barre de softkeys ;
sélectionner la fonction arc-tangente
Commuter à nouveau la barre de softkeys et ouvrir la
parenthèse
12
Introduire le numéro de paramètre Q12
Sélectionner la division
13
Introduire le numéro de paramètre Q13
Fermer la parenthèse et clore l’introduction de la
formule
Exemple de séquence CN
37
Q25 = ATAN (Q12/Q13)
HEIDENHAIN TNC 320
279
8.11 Paramètres string
8.11 Paramètres string
Fonctions de traitement de strings
Vous pouvez utiliser le traitement de strings (de l'anglais string =
chaîne de caractères) avec les paramètres QS pour créer des chaînes
de caractères variables. Par exemple, vous pouvez restituer de telles
chaînes de caractères avec la fonction FN 16:F-PRINT, pour créer des
protocoles variables.
Vous pouvez affecter à un paramètre string une chaîne de caractères
(lettres, chiffres, caractères spéciaux, caractères de contrôle et
espaces) pouvant comporter jusqu'à 256 caractères. Vous pouvez
également traiter ensuite les valeurs affectées ou lues et contrôler ces
valeurs en utilisant les fonctions décrites ci-après. Comme pour la
programmation des paramètres Q, vous disposez au total de 2000
paramètres QS (voir également „Principe et vue d’ensemble des
fonctions” à la page 230).
Les fonctions de paramètres Q FORMULE STRING et FORMULE
diffèrent au niveau du traitement des paramètres string.
Fonctions de la FORMULE STRING
Softkey
Page
Affecter les paramètres string
Page 281
Chaîner des paramètres string
Page 281
Convertir une valeur numérique en un
paramètre string
Page 283
Copier une partie de string à partir d’un
paramètre string
Page 284
Fonctions string dans la fonction
FORMULE
Softkey
Page
Convertir un paramètre string en valeur
numérique
Page 285
Vérifier un paramètre string
Page 286
Déterminer la longueur d’un paramètre
string
Page 287
Comparer l'ordre alphabétique
Page 288
Si vous utilisez la fonction FORMULE STRING, le résultat
d'une opération de calcul est toujours un string. Si vous
utilisez la fonction FORMULE, le résultat d'une opération
de calcul est toujours une valeur numérique.
280
Programmation : Paramètres Q
8.11 Paramètres string
Affecter les paramètres string
Avant d’utiliser des variables string, vous devez d’abord les initialiser.
Pour cela, utilisez l’instruction DECLARE STRING.
U
Afficher la barre de softkeys avec les fonctions
spéciales
U
Menu de définition de diverses fonctions
conversationnelles Texte clair
U
Sélectionner les fonctions string
U
Sélectionner la fonction DECLARE STRING
Exemple de séquence CN :
37 DECLARE STRING QS10 = "PIÈCE"
HEIDENHAIN TNC 320
281
8.11 Paramètres string
Chaîner des paramètres string
Avec l'opérateur chaînage (paramètre string II paramètre string), vous
pouvez assembler plusieurs paramètres string.
U
Afficher la barre de softkeys avec les fonctions
spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Sélectionner les fonctions string
U
Sélectionner la fonction FORMULE STRING
U
Introduire le numéro du paramètre string dans lequel
la TNC doit enregistrer le string chaîné; valider avec la
touche ENT
U
Introduire le numéro du paramètre string dans lequel
est enregistrée la première composante de string;
valider avec la touche ENT: La TNC affiche le symbole
de chaînage ||
U
Valider avec la touche ENT
U
Introduire le numéro du paramètre string dans lequel
est enregistrée la deuxième composante de string;
valider avec la touche ENT
U
Répéter le processus jusqu’à ce que vous ayez
sélectionné toutes les composantes de string à
chaîner; fermer avec la touche END
Exemple : QS10 doit contenir tout le texte de QS12, QS13 et QS14
37 QS10 =
QS12 || QS13 || QS14
Contenu des paramètres :
„ QS12: Pièce
„ QS13: Infos :
„ QS14: Pièce rebutée
„ QS10: Infos pièce : Pièce rebutée
282
Programmation : Paramètres Q
8.11 Paramètres string
Convertir une valeur numérique en paramètre
string
Avec la fonction TOCHAR, la TNC convertit une valeur numérique en un
paramètre string. Vous pouvez de cette manière chaîner des valeurs
numériques avec des variables string.
U
Sélectionner les fonctions de paramètres Q
U
Sélectionner la fonction FORMULE STRING
U
Sélectionner la fonction de conversion d’une valeur
numérique en paramètre string
U
Introduire le nombre ou bien le paramètre Q désiré
que la TNC doit convertir; valider avec la touche ENT
U
Si nécessaire, introduire le nombre de décimales
après la virgule que la TNC doit également convertir;
valider avec la touche ENT
U
Fermer l'expression entre parenthèses avec la touche
ENT et quitter l'introduction avec la touche END
Exemple : convertir le paramètre Q50 en paramètre string QS11,
utiliser 3 décimales
37 QS11 = TOCHAR ( DAT+Q50 DECIMALS3 )
HEIDENHAIN TNC 320
283
8.11 Paramètres string
Copier une partie de string à partir d’un
paramètre string
La fonction SUBSTR vous permet de copier une plage définissable d'un
paramètre string.
U
Sélectionner les fonctions de paramètres Q
U
Sélectionner la fonction FORMULE STRING
U
Introduire le numéro du paramètre dans lequel la TNC
doit enregistrer la chaîne de caractères copiée, valider
avec la touche ENT
U
Sélectionner la fonction de sélection de la partie de
string
U
Introduire le numéro du paramètre QS à partir duquel
vous désirez copier la partie de string; valider avec la
touche ENT
U
Introduire le numéro de l’endroit à partir duquel vous
voulez copier la composante de string, valider avec la
touche ENT
U
Introduire le nombre de caractères que vous souhaitez
copier, valider avec la touche ENT
U
Fermer l'expression entre parenthèses avec la touche
ENT et quitter l'introduction avec la touche END
Veiller à ce que le premier caractère d’une chaîne de texte
soit en interne à la position 0.
Exemple : dans le paramètre string QS10, on désire extraire une
partie de string de quatre caractères (LEN4) à partir de la
troisième position (BEG2).
37 QS13 = SUBSTR ( SRC_QS10 BEG2 LEN4 )
284
Programmation : Paramètres Q
8.11 Paramètres string
Convertir un paramètre string en une valeur
numérique
La fonction TONUMB sert à convertir un paramètre string en une valeur
numérique. La valeur à convertir ne doit comporter que des valeurs
numériques.
Le paramètre QS à convertir ne doit contenir qu’une seule
valeur numérique, sinon la TNC délivre un message
d’erreur.
U
Sélectionner les fonctions de paramètres Q
U
Sélectionner la fonction FORMULE
U
Introduire le numéro du paramètre dans lequel la TNC
doit enregistrer la valeur numérique; valider avec la
touche ENT
U
Commuter la barre de softkeys
U
Sélectionner la fonction de conversion d’un paramètre
string en une valeur numérique
U
Introduire le numéro du paramètre QS que la TNC doit
convertir, valider avec la touche ENT
U
Fermer l'expression entre parenthèses avec la touche
ENT et quitter l'introduction avec la touche END
Exemple : convertir le paramètre string QS11 en paramètre
numérique Q82
37 Q82 = TONUMB ( SRC_QS11 )
HEIDENHAIN TNC 320
285
8.11 Paramètres string
Vérification d’un paramètre string
La fonction INSTR permet de vérifier si un paramètre string est contenu
dans un autre paramètre string, et à quel endroit.
U
Sélectionner les fonctions de paramètres Q
U
Sélectionner la fonction FORMULE
U
Introduire le numéro du paramètre Q dans lequel la
TNC doit enregistrer l’emplacement où débute le
texte à rechercher, valider avec la touche ENT
U
Commuter la barre de softkeys
U
Sélectionner la fonction de vérification d’un paramètre
string
U
Introduire le numéro du paramètre QS dans lequel est
enregistré le texte à rechercher, valider avec la
touche ENT
U
Introduire le numéro du paramètre QS que la TNC doit
rechercher; valider avec la touche ENT
U
Introduire le numéro de l’emplacement à partir duquel
la TNC doit rechercher la partie de string, valider avec
la touche ENT
U
Fermer l'expression entre parenthèses avec la touche
ENT et quitter l'introduction avec la touche END
Veiller à ce que le premier caractère d’une chaîne de texte
soit en interne à la position 0.
Si la TNC ne trouve pas la composante de string
recherchée, elle enregistre alors la longueur totale du
string à rechercher dans le paramètre de résultat (le
comptage débute à 1).
Si la composante de string recherchée est trouvée
plusieurs fois, la TNC opte pour le premier emplacement
où elle a trouvé la partie de string.
Exemple : rechercher QS10 avec le texte enregistré dans le
paramètre QS13. Commencer la recherche à partir du troisième
emplacement
37 Q50 = INSTR ( SRC_QS10 SEA_QS13 BEG2 )
286
Programmation : Paramètres Q
8.11 Paramètres string
Déterminer la longueur d’un paramètre string
La fonction STRLEN calcule la longueur du texte enregistré dans un
paramètre string sélectionnable.
U
Sélectionner les fonctions de paramètres Q
U
Sélectionner la fonction FORMULE
U
Introduire le numéro du paramètre Q dans lequel la
TNC doit enregistrer la longueur de string calculée,
valider avec la touche ENT
U
Commuter la barre de softkeys
U
Sélectionner la fonction de calcul de la longueur de
texte d’un paramètre string
U
Introduire le numéro du paramètre QS dont la TNC
doit calculer la longueur; valider avec la touche ENT
U
Fermer l'expression entre parenthèses avec la touche
ENT et quitter l'introduction avec la touche END
Exemple : calculer la longueur de QS15
37 Q52 = STRLEN ( SRC_QS15 )
HEIDENHAIN TNC 320
287
8.11 Paramètres string
Comparer la suite alphabétique
La fonction STRCOMP vous permet de comparer la suite alphabétique de
paramètres string.
U
Sélectionner les fonctions de paramètres Q
U
Sélectionner la fonction FORMULE
U
Introduire le numéro du paramètre Q dans lequel la
TNC doit enregistrer le résultat de la comparaison;
valider avec la touche ENT
U
Commuter la barre de softkeys
U
Sélectionner la fonction de comparaison de
paramètres string
U
Introduire le numéro du premier paramètre QS que la
TNC doit utiliser pour la comparaison, valider avec la
touche ENT
U
Introduire le numéro du second paramètre QS que la
TNC doit utiliser pour la comparaison, valider avec la
touche ENT
U
Fermer l'expression entre parenthèses avec la touche
ENT et quitter l'introduction avec la touche END
La TNC fournit les résultats suivants :
„ 0: les paramètres QS comparés sont identiques
„ +1: dans l’ordre alphabétique, le premier paramètre QS
est situé avant le second paramètre QS
„ -1 : dans l’ordre alphabétique, le premier paramètre QS
est situé après le second paramètre QS
Exemple : comparer la suite alphabétique de QS12 et QS14
37 Q52 = STRCOMP ( SRC_QS12 SEA_QS14 )
288
Programmation : Paramètres Q
8.11 Paramètres string
Lire un paramètre-machine
Vous pouvez lire des paramètres-machine de la TNC contenant des
valeurs numériques ou des string avec la fonction CFGREAD.
Pour lire un paramètre-machine, vous devez définir dans l'éditeur de
configuration les noms du paramètre, l'objet de paramètre et le noms
de groupe et indice si ils existent.:
Modèle
Signification
Exemple
Key
Nom de groupe du
paramètre-machine (si
existant)
CH_NC
Entité
Objet de paramètre (le
nom commence avec
„Cfg...“)
CfgGeoCycle
Attribut
Nom du paramètremachine
displaySpindleErr
Indice
Indice de liste d'un
paramètre-machine (si
existant)
[0]
Symbole
Lorsque vous vous trouvez dans l'éditeur de configuration
des paramètres utilisateur, vous pouvez modifier la
présentation des paramètres existants. Avec la
configuration par défaut, les paramètres sont affichés
avec des textes explicatifs courts. Pour afficher le nom
réel des paramètres, appuyez sur la touche de partage de
l'écran et ensuite sur la softkey AFFICHER NOM DU
SYSTEME. Procédez de la même manière pour retourner
à l'affichage par défaut.
Avant de lire un paramètre-machine avec la fonction CFGREAD, vous
devez définir un paramètre QS avec l'attribut, l'entité et la Key.
Les paramètres suivants sont lus dans le dialogue de la fonction
CFGREAD :
„ KEY_QS: nom de goupe (Key) du paramètre-machine
„ KEY_QS: nom de groupe (Key) du paramètre-machine
„ ATR_QS: nom (Attribut) du paramètre-machine
„ IDX: Indice du paramètre-machine
HEIDENHAIN TNC 320
289
8.11 Paramètres string
Lire string d'un paramètre-machine
Mémoriser le contenu d'un paramètre-machine sous la forme de
String dans un paramètre QS :
U
Afficher la barre de softkeys avec les fonctions
spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Sélectionner les fonctions string
U
Sélectionner la fonction FORMULE STRING
U
Introduire le numéro du paramètre String dans lequel
la TNC doit mémoriser le paramètre-machine, valider
avec la touche ENT
U
Sélectionner la fonction CFGREAD
U
Introduire le numéro du paramètre String pour Key,
l'entité et l'attribut, valider avec la touche ENT.
U
Introduire éventuellement le numéro d'indice ou le
dialogue, ou sauter avec NO ENT
U
Fermer l'expression entre parenthèses avec la touche
ENT et quitter avec la touche END
Exemple : lire la désignation du quatrième axe en tant que String
Configuration des paramètres dans Konfig-Editor
DisplaySettings
CfgDisplayData
axisDisplayOrder
[0] bis [5]
14 DECLARE STRING QS11 = ""
Affecter les paramètres String de Key
15 DECLARE STRING QS12 = "CfgDisplayData"
Affecter les paramètres String d'entité
16 DECLARE STRING QS13 = "axisDisplayOrder"
Affecter des paramètres String aux noms de
paramètres
17 QS1 = CFGREAD( KEY_QS11 TAG_QS12 ATR_QS13 IDX3 )
Lire les paramètres-machine
290
Programmation : Paramètres Q
8.11 Paramètres string
Lire la valeur numérique d'un paramètre-machine
Déposer le contenu d'un paramètre-machine sous la forme d'une
valeur numérique dans un paramètre Q :
U
Sélectionner les fonctions de paramètres Q
U
Choisir la fonction FORMEL, choisir le menu de
définition de diverses fonctions conversationnelles
U
Introduire le numéro du paramètre Q dans lequel la
TNC doit mémoriser le paramètre-machine, valider
avec la touche ENT
U
Sélectionner la fonction CFGREAD
U
Introduire le numéro du paramètre String de Key,
l'entité et l'attribut, valider avec la touche ENT.
U
Introduire éventuellement le numéro d'indice ou le
dialogue, ou sauter avec NO ENT
U
Fermer l'expression entre parenthèses avec la touche
ENT et quitter avec la touche END
Exemple : lire le facteur de recouvrement en tant que paramètre Q
Configuration des paramètres dans Konfig-Editor
ChannelSettings
CH_NC
CfgGeoCycle
pocketOverlap
14 DECLARE STRING QS11 = "CH_NC"
Affecter un paramètre String à Key
15 DECLARE STRING QS12 = "CfgGeoCycle"
Affecter un paramètre String à entité
16 DECLARE STRING QS13 = "pocketOverlap"
Affecter les paramètres String aux noms de paramètre
17 Q50 = CFGREAD( KEY_QS11 TAG_QS12 ATR_QS13 )
Lire les paramètres-machine
HEIDENHAIN TNC 320
291
8.12 Paramètres Q réservés
8.12 Paramètres Q réservés
La TNC affecte des valeurs aux paramètres Q100 à Q199. Aux
paramètres Q sont affectés :
„ Valeurs issues du PLC
„ Informations concernant l'outil et la broche
„ Informations sur l'état de fonctionnement
„ Résultats de mesures issus des cycles palpeurs, etc.
La TNC affecte aux paramètres réservés Q108, Q114 et Q115 - Q117
les valeurs avec les unités correspondantes du programme en cours.
Vous ne devez pas utiliser comme paramètres de calcul
dans les programmes CN les paramètres Q réservés
(paramètres QS) compris entre Q100 et Q199 (QS100 et
QS199). sinon des effets indésirables pourraient se
manifester.
Valeurs issues du PLC : Q100 à Q107
La TNC utilise les paramètres Q100 à Q107 pour transférer des valeurs
du PLC dans un programme CN.
Rayon d'outil actif : Q108
La valeur active du rayon d'outil est affectée au paramètre Q108. Q108
est composé de :
„ Rayon d'outil R (tableau d'outils ou séquence TOO DEF)
„ Valeur Delta DR issue du tableau d'outils
„ Valeur Delta DR issue de la séquence TOOL CALL
La TNC conserve en mémoire le rayon d'outil actif et ce,
même après une coupure d'alimentation.
292
Programmation : Paramètres Q
8.12 Paramètres Q réservés
Axe d’outil : Q109
La valeur du paramètre Q109 dépend de l’axe d’outil en cours
d’utilisation :
Axe d'outil
Val. paramètre
Aucun axe d'outil défini
Q109 = –1
Axe X
Q109 = 0
Axe Y
Q109 = 1
Axe Z
Q109 = 2
Axe U
Q109 = 6
Axe V
Q109 = 7
Axe W
Q109 = 8
Etat de la broche : Q110
La valeur du paramètre Q110 dépend de la dernière fonction M
programmée pour la broche :
Fonction M
Val. paramètre
Aucune état de la broche définie
Q110 = –1
M3 : MARCHE broche sens horaire
Q110 = 0
M4 : MARCHE broche sens anti-horaire
Q110 = 1
M5 après M3
Q110 = 2
M5 après M4
Q110 = 3
Arrosage : Q111
Fonction M
Val. paramètre
M8 : MARCHE arrosage
Q111 = 1
M9 : ARRET arrosage
Q111 = 0
Facteur de recouvrement : Q112
La TNC affecte au paramètre Q112 le facteur de recouvrement pour le
fraisage de poche (PM7430).
HEIDENHAIN TNC 320
293
8.12 Paramètres Q réservés
Unité de mesure dans le programme : Q113
Pour les imbrications avec PGM CALL, la valeur du paramètre Q113
dépend de l’unité de mesure utilisée dans le programme qui appelle
en premier d’autres programmes.
Unité de mesure dans progr. principal
Val. paramètre
Système métrique (mm)
Q113 = 0
Système en pouces (inch)
Q113 = 1
Longueur d’outil : Q114
La valeur effective de la longueur d'outil est affectée au paramètre
Q114.
La TNC conserve en mémoire la longueur d'outil active et
ce, même après une coupure d'alimentation.
Coordonnées issues du palpage pendant
l’exécution du programme
Après une mesure programmée réalisée au moyen du palpeur 3D, les
paramètres Q115 à Q119 contiennent les coordonnées de la position
de la broche au point de palpage. Les coordonnées se réfèrent au
point d'origine courant du mode Manuel.
La longueur de la tige de palpage et le rayon de la bille ne sont pas pris
en compte pour ces coordonnées.
Axe de coordonnées
Val. paramètre
Axe X
Q115
Axe Y
Q116
Axe Z
Q117
IVème axe
dépend de la machine
Q118
Vème axe
dépend de la machine
Q119
294
Programmation : Paramètres Q
8.12 Paramètres Q réservés
Ecart entre valeur nominale et valeur effective
lors de l'étalonnage d'outil automatique avec le
TT 130
Ecart valeur nominale/effective
Val. paramètre
Longueur d'outil
Q115
Rayon d'outil
Q116
Inclinaison du plan d'usinage avec angles de la
pièce : coordonnées des axes rotatifs calculées
par la TNC
Coordonnées
Val. paramètre
Axe A
Q120
Axe B
Q121
Axe C
Q122
HEIDENHAIN TNC 320
295
8.12 Paramètres Q réservés
Résultats de la mesure avec cycles palpeurs (voir
également Manuel d'utilisation des cycles
palpeurs)
Valeurs effectives mesurées
Val. paramètre
Pente d'une droite
Q150
Centre dans l'axe principal
Q151
Centre dans l'axe secondaire
Q152
Diamètre
Q153
Longueur poche
Q154
Largeur poche
Q155
Longueur de l'axe sélectionné dans le cycle
Q156
Position de l'axe médian
Q157
Angle de l'axe A
Q158
Angle de l'axe B
Q159
Coordonnée de l'axe sélectionné dans le
cycle
Q160
Ecart calculé
Val. paramètre
Centre dans l'axe principal
Q161
Centre dans l'axe secondaire
Q162
Diamètre
Q163
Longueur poche
Q164
Largeur poche
Q165
Longueur mesurée
Q166
Position de l'axe médian
Q167
Angle dans l'espace calculé
Val. paramètre
Rotation autour de l'axe A
Q170
Rotation autour de l'axe B
Q171
Rotation autour de l'axe C
Q172
296
Programmation : Paramètres Q
Val. paramètre
Bon
Q180
Reprise d'usinage
Q181
Rebut
Q182
Ecart mesuré avec le cycle 440
Val. paramètre
Axe X
Q185
Axe Y
Q186
Axe Z
Q187
Marqueurs pour cycles
Q188
Etalonnage d'outil avec laser BLUM
Val. paramètre
réservé
Q190
réservé
Q191
réservé
Q192
réservé
Q193
Réservé pour utilisation interne
Val. paramètre
Marqueurs pour cycles
Q195
Marqueurs pour cycles
Q196
Marqueurs pour cycles (figures d'usinage)
Q197
Numéro du dernier cycle de mesure activé
Q198
Etat étalonnage d'outil avec TT
Val. paramètre
Outil dans la tolérance
Q199 = 0,0
Outil usé (LTOL/RTOL dépassée)
Q199 = 1,0
Outil cassé (LBREAK/RBREAK dépassée)
Q199 = 2,0
HEIDENHAIN TNC 320
8.12 Paramètres Q réservés
Etat de la pièce
297
Exemple : Ellipse
Déroulement du programme
„ Le contour de l'ellipse est constitué de
nombreux petits segments de droite (à définir
avec Q7). Plus le nombre d'incréments est
important, plus le contour sera lisse.
„ Définissez le sens du fraisage avec l'angle initial
et l'angle final dans le plan :
Sens d'usinage horaire :
Angle initial > angle final
Sens d'usinage anti-horaire :
Angle initial < angle final
„ Le rayon d’outil n’est pas pris en compte
Y
50
30
8.13 Exemples de programmation
8.13 Exemples de programmation
50
X
50
0 BEGIN PGM ELLIPSE MM
1 FN 0: Q1 = +50
Centre de l’axe X
2 FN 0: Q2 = +50
Centre de l’axe Y
3 FN 0: Q3 = +50
Demi-axe X
4 FN 0: Q4 = +30
Demi-axe Y
5 FN 0: Q5 = +0
Angle initial dans le plan
6 FN 0: Q6 = +360
Angle final dans le plan
7 FN 0: Q7 = +40
Nombre d'incréments de calcul
8 FN 0: Q8 = +0
Position angulaire de l'ellipse
9 FN 0: Q9 = +5
Profondeur de fraisage
10 FN 0: Q10 = +100
Avance de plongée
11 FN 0: Q11 = +350
Avance de fraisage
12 FN 0: Q12 = +2
Distance d’approche pour le prépositionnement
13 BLK FORM 0.1 Z X+0 Y+0 Z-20
Définition de la pièce brute
14 BLK FORM 0.2 X+100 Y+100 Z+0
15 TOOL CALL 1 Z S4000
Appel de l'outil
16 L Z+250 R0 FMAX
Dégager l'outil
17 CALL LBL 10
Appeler l’usinage
298
Programmation : Paramètres Q
Dégager l'outil, fin du programme
19 LBL 10
Sous-programme 10 : usinage
20 CYCL DEF 7.0 POINT ZÉRO
Décaler le point zéro au centre de l’ellipse
8.13 Exemples de programmation
18 L Z+100 R0 FMAX M2
21 CYCL DEF 7.1 X+Q1
22 CYCL DEF 7.2 Y+Q2
23 CYCL DEF 10.0 ROTATION
Position angulaire dans le plan
24 CYCL DEF 10.1 ROT+Q8
26 Q35 = (Q6 - Q5) / Q7
Calculer l'incrément angulaire
26 Q36 = Q5
Copier l’angle initial
27 Q37 = 0
Initialiser le compteur
28 Q21 = Q3 * COS Q36
Calculer la coordonnée X du point initial
29 Q22 = Q4 * SIN Q36
Calculer la coordonnée Y du point initial
30 L X+Q21 Y+Q22 R0 FMAX M3
Aborder le point initial dans le plan
31 L Z+Q12 R0 FMAX
Prépositionnement à la distance d’approche dans l’axe de broche
32 L Z-Q9 R0 FQ10
Aller à la profondeur d’usinage
33 LBL 1
34 Q36 = Q36 + Q35
Actualiser l’angle
35 Q37 = Q37 + 1
Actualiser le compteur
36 Q21 = Q3 * COS Q36
Calculer la coordonnée X effective
37 Q22 = Q4 * SIN Q36
Calculer la coordonnée Y effective
38 L X+Q21 Y+Q22 R0 FQ11
Aborder le point suivant
39 FN 12: IF +Q37 LT +Q7 GOTO LBL 1
Question : travail non encore terminé ?, si oui, saut au LBL 1
40 CYCL DEF 10.0 ROTATION
Annuler la rotation
41 CYCL DEF 10.1 ROT+0
42 CYCL DEF 7.0 POINT ZÉRO
Annuler le décalage du point zéro
43 CYCL DEF 7.1 X+0
44 CYCL DEF 7.2 Y+0
45 L Z+Q12 R0 FMAX
Aller à la distance d’approche
46 LBL 0
Fin du sous-programme
47 END PGM ELLIPSE MM
HEIDENHAIN TNC 320
299
8.13 Exemples de programmation
Exemple : cylindre concave avec fraise à bout hémisphérique
Déroulement du programme
„ Le programme fonctionne avec une fraise à bout
hémisphérique, la longueur d'outil se réfère au
centre de l'outil
„ Le contour du cylindre est constitué de
nombreux petits segments de droite (à définir
avec Q13). Plus de passes sont programmées et
plus le contour sera lisse.
„ Le cylindre est fraisé en coupes longitudinales
(dans ce cas : parallèles à l’axe Y)
„ Définissez le sens du fraisage avec l'angle initial
et l'angle final dans l'espace :
Sens d'usinage horaire :
Angle initial > angle final
Sens d'usinage anti-horaire :
Angle initial < angle final
„ Le rayon d'outil est corrigé automatiquement
Z
R4
X
0
-50
100
Y
Y
50
100
X
Z
0 BEGIN PGM CYLIN MM
1 FN 0: Q1 = +50
Centre de l’axe X
2 FN 0: Q2 = +0
Centre de l’axe Y
3 FN 0: Q3 = +0
Centre de l'axe Z
4 FN 0: Q4 = +90
Angle initial dans l'espace (plan Z/X)
5 FN 0: Q5 = +270
Angle final dans l'espace (plan Z/X)
6 FN 0: Q6 = +40
Rayon du cylindre
7 FN 0: Q7 = +100
Longueur du cylindre
8 FN 0: Q8 = +0
Position angulaire dans le plan X/Y
9 FN 0: Q10 = +5
Surépaisseur du rayon du cylindre
10 FN 0: Q11 = +250
Avance plongée en profondeur
11 FN 0: Q12 = +400
Avance de fraisage
12 FN 0: Q13 = +90
Nombre de passes
13 BLK FORM 0.1 Z X+0 Y+0 Z-50
Définition de la pièce brute
14 BLK FORM 0.2 X+100 Y+100 Z+0
15 TOOL CALL 1 Z S4000
Appel de l'outil
16 L Z+250 R0 FMAX
Dégager l'outil
17 CALL LBL 10
Appeler l’usinage
18 FN 0: Q10 = +0
Annuler la surépaisseur
19 CALL LBL 10
Appeler l’usinage
300
Programmation : Paramètres Q
Dégager l'outil, fin du programme
21 LBL 10
Sous-programme 10 : usinage
22 Q16 = Q6 - Q10 - Q108
Calcul du rayon polaire en tenant compte de l'outil et de la
surépaisseur
23 FN 0: Q20 = +1
Initialiser le compteur
24 FN 0: Q24 = +Q4
Copier l'angle initial dans l'espace (plan Z/X)
25 Q25 = (Q5 - Q4) / Q13
Calculer l'incrément angulaire
26 CYCL DEF 7.0 POINT ZÉRO
Décaler le point zéro au centre du cylindre (axe X)
8.13 Exemples de programmation
20 L Z+100 R0 FMAX M2
27 CYCL DEF 7.1 X+Q1
28 CYCL DEF 7.2 Y+Q2
29 CYCL DEF 7.3 Z+Q3
30 CYCL DEF 10.0 ROTATION
Position angulaire dans le plan
31 CYCL DEF 10.1 ROT+Q8
32 L X+0 Y+0 R0 FMAX
Prépositionnement dans le plan, au centre du cylindre
33 L Z+5 R0 F1000 M3
Prépositionnement dans l'axe de broche
34 LBL 1
35 CC Z+0 X+0
Initialiser le pôle dans le plan Z/X
36 LP PR+Q16 PA+Q24 FQ11
Aborder position initiale du cylindre, avec plongée oblique dans la
matière
37 L Y+Q7 R0 FQ12
Passe longitudinale dans le sens Y+
38 FN 1: Q20 = +Q20 + +1
Actualiser le compteur
39 FN 1: Q24 = +Q24 + +Q25
Actualiser l’angle dans l'espace
40 FN 11: IF +Q20 GT +Q13 GOTO LBL 99
Question : travail terminé ?. Si oui, saut à la fin
41 LP PR+Q16 PA+Q24 FQ11
Aborder “l'arc“ pour exécuter la coupe longitudinale suivante
42 L Y+0 R0 FQ12
Passe longitudinale dans le sens Y–
43 FN 1: Q20 = +Q20 + +1
Actualiser le compteur
44 FN 1: Q24 = +Q24 + +Q25
Actualiser l’angle dans l'espace
45 FN 12: IF +Q20 LT +Q13 GOTO LBL 1
Question : travail non encore terminé ?, si oui, saut au LBL 1
46 LBL 99
47 CYCL DEF 10.0 ROTATION
Annuler la rotation
48 CYCL DEF 10.1 ROT+0
49 CYCL DEF 7.0 POINT ZÉRO
Annuler le décalage du point zéro
50 CYCL DEF 7.1 X+0
51 CYCL DEF 7.2 Y+0
52 CYCL DEF 7.3 Z+0
53 LBL 0
Fin du sous-programme
54 END PGM CYLIN
HEIDENHAIN TNC 320
301
Déroulement du programme
„ Ce programme ne fonctionne qu’avec une fraise
deux tailles
„ Le contour de la sphère est constitué de
nombreux petits segments de droite (à définir
avec Q14, plan Z/X). Plus l'incrément angulaire
est petit et plus le contour sera lisse
„ Définissez le nombre de passes sur le contour
avec l'incrément angulaire dans le plan (avec
Q18)
„ La sphère est usinée par passes 3D de bas en
haut
„ Le rayon d'outil est corrigé automatiquement
Y
Y
100
R4
5
8.13 Exemples de programmation
Exemple : sphère convexe avec fraise deux tailles
5
R4
50
50
100
X
-50
Z
0 BEGIN PGM SPHÈRE MM
1 FN 0: Q1 = +50
Centre de l’axe X
2 FN 0: Q2 = +50
Centre de l’axe Y
3 FN 0: Q4 = +90
Angle initial dans l'espace (plan Z/X)
4 FN 0: Q5 = +0
Angle final dans l'espace (plan Z/X)
5 FN 0: Q14 = +5
Incrément angulaire dans l'espace
6 FN 0: Q6 = +45
Rayon de la sphère
7 FN 0: Q8 = +0
Position de l'angle initial dans le plan X/Y
8 FN 0: Q9 = +360
Position de l'angle final dans le plan X/Y
9 FN 0: Q18 = +10
Incrément angulaire dans le plan X/Y pour l'ébauche
10 FN 0: Q10 = +5
Surépaisseur du rayon de la sphère pour l'ébauche
11 FN 0: Q11 = +2
Distance d'approche pour prépositionnement dans l'axe de broche
12 FN 0: Q12 = +350
Avance de fraisage
13 BLK FORM 0.1 Z X+0 Y+0 Z-50
Définition de la pièce brute
14 BLK FORM 0.2 X+100 Y+100 Z+0
15 TOOL CALL 1 Z S4000
Appel de l'outil
16 L Z+250 R0 FMAX
Dégager l'outil
302
Programmation : Paramètres Q
Appeler l’usinage
18 FN 0: Q10 = +0
Annuler la surépaisseur
19 FN 0: Q18 = +5
Incrément angulaire dans le plan X/Y pour la finition
20 CALL LBL 10
Appeler l’usinage
21 L Z+100 R0 FMAX M2
Dégager l'outil, fin du programme
22 LBL 10
Sous-programme 10 : usinage
23 FN 1: Q23 = +Q11 + +Q6
Calculer coordonnée Z pour le prépositionnement
24 FN 0: Q24 = +Q4
Copier l'angle initial dans l'espace (plan Z/X)
25 FN 1: Q26 = +Q6 + +Q108
Corriger le rayon de la sphère pour le prépositionnement
26 FN 0: Q28 = +Q8
Copier la position angulaire dans le plan
27 FN 1: Q16 = +Q6 + -Q10
Prendre en compte la surépaisseur pour le rayon de la sphère
28 CYCL DEF 7.0 POINT ZÉRO
Décaler le point zéro au centre de la sphère
8.13 Exemples de programmation
17 CALL LBL 10
29 CYCL DEF 7.1 X+Q1
30 CYCL DEF 7.2 Y+Q2
31 CYCL DEF 7.3 Z-Q16
32 CYCL DEF 10.0 ROTATION
Calculer la position angulaire dans le plan
33 CYCL DEF 10.1 ROT+Q8
34 LBL 1
Prépositionnement dans l'axe de broche
35 CC X+0 Y+0
Initialiser le pôle dans le plan X/Y pour le prépositionnement
36 LP PR+Q26 PA+Q8 R0 FQ12
Prépositionnement dans le plan
37 CC Z+0 X+Q108
Initialiser le pôle dans le plan Z/X, avec décalage du rayon d’outil
38 L Y+0 Z+0 FQ12
Se déplacer à la profondeur
HEIDENHAIN TNC 320
303
8.13 Exemples de programmation
39 LBL 2
40 LP PR+Q6 PA+Q24 FQ12
Aborder l'„arc” vers le haut
41 FN 2: Q24 = +Q24 - +Q14
Actualiser l’angle dans l'espace
42 FN 11: IF +Q24 GT +Q5 GOTO LBL 2
Question : arc terminé ?. Si non, saut au LBL 2
43 LP PR+Q6 PA+Q5
Aborder l'angle final dans l’espace
44 L Z+Q23 R0 F1000
Dégager l'outil dans l’axe de broche
45 L X+Q26 R0 FMAX
Prépositionnement pour l’arc suivant
46 FN 1: Q28 = +Q28 + +Q18
Actualiser la position angulaire dans le plan
47 FN 0: Q24 = +Q4
Annuler l'angle dans l'espace
48 CYCL DEF 10.0 ROTATION
Activer nouvelle position angulaire
49 CYCL DEF 10.0 ROT+Q28
50 FN 12: IF +Q28 LT +Q9 GOTO LBL 1
51 FN 9: IF +Q28 EQU +Q9 GOTO LBL 1
Question : travail non encore terminé ?. Si oui, saut au LBL 1
52 CYCL DEF 10.0 ROTATION
Annuler la rotation
53 CYCL DEF 10.1 ROT+0
54 CYCL DEF 7.0 POINT ZÉRO
Annuler le décalage du point zéro
55 CYCL DEF 7.1 X+0
56 CYCL DEF 7.2 Y+0
57 CYCL DEF 7.3 Z+0
58 LBL 0
Fin du sous-programme
59 END PGM SPHÈRE MM
304
Programmation : Paramètres Q
Programmation :
fonctions auxiliaires
9.1 Introduire les fonctions M et STOP
9.1 Introduire les fonctions M et
STOP
Principes de base
Grâce aux fonctions auxiliaires de la TNC – appelées également
fonctions M – vous commandez :
„ le déroulement du programme, p. ex. une interruption de l'exécution
„ des fonctions de la machine, par exemple, l’activation et la
désactivation de la rotation broche et de l’arrosage
„ le comportement de contournage de l'outil
Le constructeur de la machine peut valider des fonctions
auxiliaires non décrites dans ce Manuel. Consultez le
manuel de votre machine.
Vous pouvez introduire jusqu'à deux fonctions auxiliaires M à la fin
d'une séquence de positionnement ou bien dans une séquence à part.
La TNC affiche alors le dialogue : Fonction auxiliaire M ?
Dans le dialogue, vous n'indiquez habituellement que le numéro de la
fonction auxiliaire. Pour certaines d'entre elles, le dialogue continue
afin que vous puissiez introduire les paramètres supplémentaires de
cette fonction.
En modes de fonctionnement Manuel et Manivelle électronique,
introduisez les fonctions auxiliaires avec la softkey M.
Certaines fonctions auxiliaires sont actives en début d'une
séquence de positionnement, d'autres à la fin et ce,
indépendamment de la position où elles se trouvent dans
la séquence CN concernée.
Les fonctions auxiliaires agissent à partir de la séquence
où elles sont appelées.
Certaines fonctions auxiliaires ne sont actives que dans la
séquence où elles sont programmées. Si la fonction
auxiliaire est modale, vous devez l'annuler à nouveau dans
une séquence suivante en utilisant une fonction M
séparée, sinon elle s'annule automatiquement à la fin du
programme.
Introduire une fonction auxiliaire dans la séquence STOP
Une séquence STOP programmée interrompt l'exécution ou le test du
programme, par exemple, pour vérifier l'outil. Vous pouvez
programmer une fonction auxiliaire M dans une séquence STOP :
U
Programmer un arrêt : appuyer sur la touche STOP
U
Introduire la fonction auxiliaire M
Exemple de séquences CN
87 STOP M6
306
Programmation : fonctions auxiliaires
9.2 Fonctions auxiliaires pour contrôler l'exécution du programme, la broche
et l'arrosage
9.2 Fonctions auxiliaires pour
contrôler l'exécution du
programme, la broche et
l'arrosage
Vue d'ensemble
Action dans la
séquence
au
début
M
Effet
M0
ARRET programme
ARRET broche
ARRET arrosage
„
M1
ARRET optionnel
ARRET broche
ARRET arrosage
„
M2
ARRET programme
ARRET broche
ARRET arrosage
Retour à la séquence 1
Effacement de l'affichage d'état
(dépend du paramètre-machine
clearMode)
„
M3
MARCHE broche sens horaire
„
M4
MARCHE broche sens anti-horaire
„
M5
ARRET broche
„
M6
Changement d'outil
ARRET broche
ARRET programme
„
M8
MARCHE arrosage
M9
ARRET arrosage
M13
MARCHE broche sens horaire
MARCHE arrosage
„
M14
MARCHE broche sens anti-horaire
MARCHE arrosage
„
M30
comme M2
HEIDENHAIN TNC 320
à la fin
„
„
„
307
9.3 Fonctions auxiliaires pour données de coordonnées
9.3 Fonctions auxiliaires pour
données de coordonnées
Programmer les coordonnées machine :
M91/M92
Point zéro règle
Sur la règle de mesure, une marque de référence définit la position du
point zéro de la règle.
Point zéro machine
Vous avez besoin du point zéro machine pour
„ activer les limitations de la zone de déplacement (commutateurs de
fin de course logiciel)
„ aborder les positions machine (position de changement d’outil, par
exemple)
„ initialiser un point d'origine pièce
XMP
X (Z,Y)
Pour chaque axe, le constructeur de la machine introduit dans un
paramètre-machine la distance entre le point zéro machine et le point
zéro règle.
Comportement standard
Les coordonnées se réfèrent au point zéro pièce, voir „Initialisation du
point d'origine sans palpeur 3D”, page 378.
Comportement avec M91 – Point zéro machine
Dans les séquences de positionnement, si les coordonnées doivent se
référer au point zéro machine, introduisez alors M91 dans ces
séquences.
Si vous programmez des coordonnées incrémentales
dans une séquence M91, celles-ci se réfèrent à la dernière
position M91 programmée. Si aucune position M91 n'a
été programmée dans le programme CN actif, les
coordonnées se réfèrent alors à la position d'outil actuelle.
La TNC affiche les valeurs de coordonnées se référant au point zéro
machine. Dans l'affichage d'état, commutez l'affichage des
coordonnées sur REF, voir „Affichages d'état”, page 65.
308
Programmation : fonctions auxiliaires
9.3 Fonctions auxiliaires pour données de coordonnées
Comportement avec M92 – Point de référence machine
En plus du point zéro machine, le constructeur de la
machine peut définir une autre position machine fixe (par
rapport au zéro machine).
Le constructeur de la machine définit pour chaque axe la
distance entre le point de référence machine et le point
zéro machine (voir manuel de la machine).
Si les coordonnées des séquences de positionnement doivent se
référer au point de référence machine, introduisez alors M92 dans ces
séquences.
La TNC exécute également les corrections de rayon avec
M91 et M92. Toutefois, dans ce cas, la longueur d'outil
n'est pas prise en compte.
Effet
M91 et M92 ne sont actives que dans les séquences de programme
où elles sont programmées.
M91 et M92 sont actives en début de séquence.
Point d'origine pièce
Si les coordonnées doivent toujours se référer au point zéro machine,
il est possible de bloquer l'initialisation du point d'origine d'un ou
plusieurs axes.
Z
Z
Si l'initialisation du point d'origine est bloquée sur tous les axes, la TNC
n'affiche plus la softkey INITIAL. POINT DE REFERENCE en mode
Manuel.
La figure montre les systèmes de coordonnées avec le point zéro
machine et le point zéro pièce.
M91/M92 en mode Test de programme
Si vous souhaitez également simuler graphiquement des
déplacements M91/M92, vous devez activer la surveillance de la zone
de travail et faire afficher la pièce brute se référant au point d'origine
initialisé, voir „Représenter la pièce brute dans la zone d'usinage”,
page 421.
HEIDENHAIN TNC 320
Y
Y
X
X
M
309
9.3 Fonctions auxiliaires pour données de coordonnées
Aborder les positions dans le système de
coordonnées non incliné avec plan d'usinage
incliné : M130
Comportement standard avec plan d'usinage incliné
Les coordonnées des séquences de positionnement se réfèrent au
système de coordonnées incliné.
Comportement avec M130
Lorsque le plan d'usinage incliné est actif, les coordonnées des
séquences linéaires se réfèrent au système de coordonnées non
incliné.
La TNC positionne alors l'outil (incliné) à la coordonnée programmée
du système non incliné.
Attention, risque de collision!
Les séquences suivantes de positionnement ou cycles
d'usinage sont à nouveau exécutés dans le système de
coordonnées incliné ; ceci peut occasionner des
problèmes pour les cycles d'usinage avec un prépositionnement absolu.
La fonction M130 n'est autorisée que si la fonction
Inclinaison du plan d'usinage est active.
Effet
M130 est non modale dans les séquences linéaires sans correction du
rayon d'outil.
310
Programmation : fonctions auxiliaires
9.4 Fonctions auxiliaires pour le comportement de contournage
9.4 Fonctions auxiliaires pour le
comportement de contournage
Usinage de petits éléments de contour: M97
Comportement standard
Dans un angle externe, la TNC insère un cercle de transition. En
présence de très petits éléments, l'outil risquerait alors
d'endommager le contour.
Y
Dans ce cas là, la TNC interrompt l'exécution du programme et délivre
le message d'erreur „Rayon d'outil trop grand“.
Comportement avec M97
La TNC définit un point d'intersection des éléments du contour –
comme avec les angles rentrants– et déplace l'outil à ce point.
Programmez M97 dans la séquence de déplacement au sommet de
l'angle.
Au lieu de M97, nous vous conseillons d'utiliser la fonction
plus performante M120 LA (voir „Calcul anticipé d'un
contour avec correction de rayon (LOOK AHEAD): M120”
à la page 316)!
Effet
M97 n’est active que dans la séquence où elle a été programmée.
X
Y
L'angle du contour sera usiné de manière incomplète avec
M97. Vous devez éventuellement effectuer un autre
usinage à l'aide d'un outil plus petit.
S
S
13
16
14
15
17
X
HEIDENHAIN TNC 320
311
9.4 Fonctions auxiliaires pour le comportement de contournage
Exemple de séquences CN
5 TOOL DEF L ... R+20
Grand rayon d’outil
...
13 L X... Y... R... F... M97
Aborder point 13 du contour
14 L IY-0.5 ... R... F...
Usiner les petits éléments de contour 13 et 14
15 L IX+100 ...
Aborder point 15 du contour
16 L IY+0.5 ... R... F... M97
Usiner les petits éléments de contour 15 et 16
17 L X... Y...
Aborder point 17 du contour
312
Programmation : fonctions auxiliaires
9.4 Fonctions auxiliaires pour le comportement de contournage
Usinage intégral d'angles de contour ouverts :
M98
Comportement standard
Dans les angles rentrants, la TNC calcule le point d’intersection des
trajectoires de la fraise et déplace l’outil à partir de ce point, dans la
nouvelle direction.
Y
Lorsque le contour est ouvert aux angles, l'usinage est alors
incomplet :
Comportement avec M98
Avec la fonction auxiliaire M98, la TNC déplace l'outil jusqu'à ce que
chaque point du contour soit réellement usiné :
Effet
M98 n'est active que dans les séquences de programme où elle a été
programmée.
S
S
X
M98 est active en fin de séquence.
Exemple de séquences CN
Aborder les uns après les autres les points 10, 11 et 12 du contour :
10 L X... Y... RL F
11 L X... IY... M98
12 L IX+ ...
Y
10
11
HEIDENHAIN TNC 320
12
X
313
9.4 Fonctions auxiliaires pour le comportement de contournage
Facteur d’avance pour plongées : M103
Comportement standard
La TNC déplace l’outil suivant l’avance précédemment programmée et
indépendamment du sens du déplacement.
Comportement avec M103
La TNC réduit l'avance de contournage lorsque l'outil se déplace dans
le sens négatif de l'axe d'outil. L'avance de plongée FZMAX est
calculée à partir de la dernière avance programmée FPROG et d'un
facteur F% :
FZMAX = FPROG x F%
Introduire M103
Lorsque vous introduisez M103 dans une séquence de
positionnement, la TNC continue le dialogue et demande le facteur F.
Effet
M103 est active en début de séquence.
Annuler M103 : reprogrammer M103 sans facteur
M103 agit également lorsque le plan d'usinage incliné est
activé. La réduction d'avance agit dans ce cas lors du
déplacement dans le sens négatif de l'axe d'outil incliné
Exemple de séquences CN
L’avance de plongée est 20% de l’avance dans le plan.
...
Avance de contournage réelle (mm/min.) :
17 L X+20 Y+20 RL F500 M103 F20
500
18 L Y+50
500
19 L IZ-2.5
100
20 L IY+5 IZ-5
141
21 L IX+50
500
22 L Z+5
500
314
Programmation : fonctions auxiliaires
9.4 Fonctions auxiliaires pour le comportement de contournage
Avance en millimètres/tour de broche : M136
Comportement standard
La TNC déplace l'outil selon l'avance F en mm/min. définie dans le
programme.
Comportement avec M136
Dans les programmes en pouces, M136 n'est pas
autorisée avec la nouvelle avance alternative FU.
Avec M136 active, la broche ne doit pas être asservie.
Avec M136, la TNC ne déplace pas l'outil en mm/min. mais selon
l'avance F en millimètres/tour de broche définie dans le programme.
Si vous modifiez la vitesse de rotation à l'aide du potentiomètre de
broche, la TNC adapte automatiquement l'avance.
Effet
M136 est active en début de séquence.
Pour annuler M136, programmez M137.
Vitesse d'avance sur les arcs de cercle :
M109/M110/M111
Comportement standard
L’avance programmée se réfère à la trajectoire du centre de l’outil.
Comportement dans les arcs de cercle avec M109
Lorsque la TNC usine un contour circulaire intérieur et extérieur,
l’avance de l'outil reste constante au niveau du tranchant de l'outil.
Comportement sur les arcs de cercle avec M110
L'avance ne reste constante que lorsque la TNC usine un contour
circulaire intérieur. Lors de l'usinage d'un contour circulaire extérieur,
il n'y a pas d'adaptation de l'avance.
Si vous définissez M109 ou M110 avant d'avoir appelé un
cycle d'usinage supérieur à 200, l'adaptation de l'avance
agit également sur les contours circulaires contenus dans
ces cycles d'usinage. A la fin ou après l'interruption d'un
cycle d'usinage, la situation de départ est à nouveau
rétablie.
Effet
M109 et M110 sont actives en début de séquence. Pour annuler
M109 et M110, introduisez M111.
HEIDENHAIN TNC 320
315
9.4 Fonctions auxiliaires pour le comportement de contournage
Calcul anticipé d'un contour avec correction de
rayon (LOOK AHEAD): M120
Comportement standard
Si le rayon d'outil est supérieur à un étage de contour à usiner avec
correction de rayon, la TNC interrompt l'exécution du programme et
affiche un message d'erreur. M97 (voir „Usinage de petits éléments
de contour: M97” à la page 311) n'affiche pas de message d'erreur,
mais entraine un défaut d'usinage du contour, et décale en plus le
coin.
Si le contour comporte plusieurs de ces éléments, la TNC peut
l'endommager.
Comportement avec M120
La TNC vérifie un contour avec correction de rayon en fonction de ces
situations et calcule par anticipation la trajectoire de l'outil à partir de
la séquence actuelle. Les endroits où le contour pourrait être
endommagé par l'outil ne sont pas usinés (représentation en gris
sombre sur la figure). Vous pouvez également utiliser M120 pour
attribuer une correction de rayon d'outil à un programme de données
digitalisées ou de données issues d'un système de programmation
externe. De cette manière, les écarts par rapport au rayon d'outil
théorique sont compensables.
Y
Le nombre de séquences (99 max.) dont la TNC a besoin pour son
calcul anticipé est à définir avec LA (de l'angl. Look Ahead: Anticiper)
derrière M120. Plus le nombre de séquences sélectionnées pour le
calcul anticipé est élevé et plus le traitement des séquences sera lent.
Introduction
Si vous introduisez M120 dans une séquence de positionnement, la
TNC continue le dialogue dans cette séquence et demande le nombre
LA de séquences nécessaires au calcul anticipé.
316
X
Programmation : fonctions auxiliaires
9.4 Fonctions auxiliaires pour le comportement de contournage
Effet
M120 doit être située dans une séquence CN qui contient aussi la
correction de rayon RL ou RR. M120 est active à partir de cette
séquence et jusqu'à ce que
„ la correction de rayon soit annulée avec R0
„ M120 LA0 soit programmée
„ M120 soit programmée sans LA
„ un autre programme soit appelé avec PGM CALL
„ le plan d'usinage soit incliné avec le cycle 19 ou la fonction PLANE
M120 est active en début de séquence.
Conditions restrictives
„ Après un stop externe/interne, vous ne devez exécuter le
réaccostage de contour qu'avec la fonction AMORCE SEQUENCE
N. Avant de lancer l'amorce de séquence, vous devez annuler M120
car, sinon, la TNC délivre un message d'erreur
„ Lorsque vous utilisez les fonctions de contournage RND et CHF, les
séquences situées avant et après RND ou CHF ne doivent contenir
que des coordonnées du plan d'usinage
„ Lorsque vous abordez le contour avec une approche tangentielle,
vous devez utiliser la fonction APPR LCT ; la séquence contenant
APPR LCT ne doit contenir que des coordonnées du plan d’usinage
„ Lorsque vous quittez le contour avec un départ tangentielle, vous
devez utiliser la fonction DEP LCT ; la séquence contenant DEP LCT
ne doit contenir que des coordonnées du plan d’usinage
„ Avant d'utiliser les fonctions ci-après, vous devez annuler M120 et
la correction de rayon :
„ Cycle 32 Tolérance
„ Cycle 19 Plan d'usinage
„ Fonction PLANE
„ M114
„ M128
HEIDENHAIN TNC 320
317
9.4 Fonctions auxiliaires pour le comportement de contournage
Superposition de la manivelle pendant
l'exécution du programme: M118
Comportement standard
Dans les modes Exécution du programme, la TNC déplace l’outil tel
que défini dans le programme d’usinage.
Comportement avec M118
A l'aide de M118, vous pouvez effectuer des corrections manuelles
avec la manivelle pendant l'exécution du programme. Pour cela,
programmez M118 et introduisez pour chaque axe (linéaire ou rotatif)
une valeur spécifique en mm.
Introduction
Lorsque vous introduisez M118 dans une séquence de
positionnement, la TNC continue le dialogue et réclame les valeurs
spécifiques pour chaque axe. Utilisez les touches d'axes oranges ou
le clavier ASCII pour l'introduction des coordonnées.
Effet
Vous annulez le positionnement à l’aide de la manivelle en
reprogrammant M118 sans introduire de coordonnées.
M118 est active en début de séquence.
Exemple de séquences CN
Pendant l'exécution du programme, il faut pouvoir se déplacer avec la
manivelle dans le plan d’usinage X/Y à ±1 mm, et dans l'axe rotatif B
à ±5° de la valeur programmée :
L X+0 Y+38.5 RL F125 M118 X1 Y1 B5
M118 agit dans le système de coordonnées incliné quand
vous activez l'inclinaison du plan d'usinage dans le mode
manuel. Le système de coordonnées original agit dans le
cas ou l'inclinaison du plan d'usinage est inactif dans le
mode manuel.
M118 agit aussi en mode Positionnement avec
introduction manuelle!
Si M118 est active, la fonction DEPLACEMENT MANUEL
n'est pas disponible lors d'une interruption du
programme!
318
Programmation : fonctions auxiliaires
9.4 Fonctions auxiliaires pour le comportement de contournage
Dégagement du contour dans le sens de l'axe
d'outil : M140
Comportement standard
Dans les modes Exécution du programme, la TNC déplace l’outil tel
que défini dans le programme d’usinage.
Comportement avec M140
Avec M140 MB (move back), vous pouvez dégager l'outil du contour
d'une certaine valeur dans le sens de l'axe d'outil.
Introduction
Lorsque vous introduisez M140 dans une séquence de
positionnement, la TNC continue le dialogue et réclame la valeur du
dégagement de l'outil par rapport au contour. Introduisez la valeur
souhaitée du dégagement du contour que l'outil doit effectuer ou
appuyez sur la softkey MB MAX pour accéder à la limite de la zone de
déplacement.
De plus, on peut programmer une avance suivant laquelle l'outil
parcourt la course programmée. Si vous n'introduisez pas d'avance, la
TNC parcourt en avance rapide la trajectoire programmée.
Effet
M140 n’est active que dans la séquence de programme où elle a été
programmée.
M140 est active en début de séquence.
Exemple de séquences CN
Séquence 250 : dégager l'outil à 50 mm du contour
Séquence 251 : déplacer l'outil jusqu'à la limite de la zone de
déplacement
250 L X+0 Y+38.5 F125 M140 MB 50 F750
251 L X+0 Y+38.5 F125 M140 MB MAX
M140 est également active quand la fonction inclinaison
du plan d'usinage est active. Sur les machines équipées
de têtes pivotantes, la TNC déplace l'outil dans le système
incliné.
Avec M140 MB MAX, vous pouvez effectuer le dégagement
seulement dans le sens positif.
Avant M140, définir systématiquement un appel d'outil
avec l'axe d'outil car, sinon le sens du déplacement n'est
pas défini.
HEIDENHAIN TNC 320
319
9.4 Fonctions auxiliaires pour le comportement de contournage
Annuler la surveillance du palpeur : M141
Comportement standard
Lorsque la tige de palpage est déviée, la TNC délivre un message
d'erreur dès le déplacement d'un axe de la machine.
Comportement avec M141
La TNC déplace les axes de la machine même si la tige de palpage a
été déviée. Si vous écrivez un cycle de mesure en liaison avec le cycle
de mesure 3, cette fonction est nécessaire pour dégager à nouveau le
palpeur avec une séquence de positionnement suivant la déviation de
la tige.
Attention, risque de collision!
Si vous utilisez la fonction M141, veillez à dégager le
palpeur dans la bonne direction.
M141 n'agit que sur les déplacements comportant des
séquences linéaires.
Effet
M141 n’est active que dans la séquence de programme où elle a été
programmée.
M141 est active en début de séquence.
320
Programmation : fonctions auxiliaires
9.4 Fonctions auxiliaires pour le comportement de contournage
Dégager automatiquement l'outil du contour
lors d'un stop CN : M148
Comportement standard
Lors d'un arrêt CN, la TNC stoppe tous les déplacements. L'outil
s'immobilise au point d'interruption.
Comportement avec M148
La fonction M148 doit être validée par le constructeur de
la machine. Le constructeur de la machine définit dans un
paramètre-machine la course que doit parcourir la TNC lors
d'un LIFTOFF.
La TNC dégage l'outil du contour jusqu'à 30 mm dans le sens de l'axe
d'outil si vous avez initialisé dans la colonne LIFTOFF du tableau
d'outils le paramètre Yde l'outil actif (voir „Tableau d'outils : données
d'outils standard” à la page 138).
LIFTOFF est actif dans les situations suivantes :
„ lorsque vous avez déclenché un stop CN
„ lorsqu'un stop CN est déclenché par le logiciel, p. ex. en présence
d'une erreur au niveau du système d'entraînement
„ lors d'une coupure d'alimentation
Attention, risque de collision!
Lors d'un réaccostage de contour, des détériorations du
contour peuvent apparaître, particulièrement sur des
surfaces gauches. Dégager l'outil avant de réaccoster le
contour!
Définissez la valeur de dégagement souhaité de l’outil
dans le paramètre-machine CfgLiftOff. Vous pouvez
aussi, d’une manière générale, désactiver cette fonction
dans le paramètre-machine CfgLiftOff.
Effet
M148 agit jusqu'à ce que la fonction soit désactivée avec M149.
M148 est active en début de séquence et M149, en fin de séquence.
HEIDENHAIN TNC 320
321
322
Programmation : fonctions auxiliaires
9.4 Fonctions auxiliaires pour le comportement de contournage
Programmation :
fonctions spéciales
10.1 Aperçu des fonctions spéciales
10.1 Aperçu des fonctions spéciales
La touche SPEC FCT et les softkeys correspondantes vous donnent
accès à d'autres fonctions spéciales de la TNC. Les tableaux suivants
récapitulent les fonctions disponibles.
Menu principal fonctions spéciales SPEC FCT
U
Sélectionner les fonctions spéciales
Fonction
Softkey
Description
Définir les données par défaut
Page 325
Fonctions pour l'usinage de
contours et de points
Page 325
Définir la fonction PLANE
Page 345
Définir diverses fonctions
conversationnelles Texte clair
Page 326
Définir le point d'articulation
Page 117
324
Programmation : fonctions spéciales
10.1 Aperçu des fonctions spéciales
Menu pré-définition de paramètres
U
Sélectionner le menu de pré-définition de paramètres
Fonction
Softkey
Description
Définir la pièce brute
Page 83
Sélectionner le tableau de points
zéro
Voir Manuel
d'utilisation des
cycles
Menu des fonctions pour l'usinage de contours
et de points
U
Sélectionner le menu des fonctions d'usinage de
contours et de points
Fonction
Softkey
Description
Affecter une description de
contour
Voir Manuel
d'utilisation des
cycles
Définir une formule simple de
contour
Voir Manuel
d'utilisation des
cycles
Sélectionner une définition de
contour
Voir manuel
d'utilisation des
cycles
Définir une formule complexe de
contour
Voir manuel
d'utilisation des
cycles
Définir des motifs d'usinage
réguliers
Voir manuel
d'utilisation des
cycles
Sélectionner un fichier de points
avec positions d'usinage
Voir manuel
d'utilisation des
cycles
HEIDENHAIN TNC 320
325
10.1 Aperçu des fonctions spéciales
Menu de définition de diverses fonctions
conversationnelles Texte clair
U
Menu de définition de diverses fonctions
conversationnelles Texte clair
Fonction
Softkey
Description
Définir le comportement des
axes parallèles U, V, W
Page 327
Définir les fonctions String
Page 280
Insérer un commentaire
Page 115
326
Programmation : fonctions spéciales
Tableau récapitulatif
Votre machine doit être configurée par le constructeur de
votre machine pour l'utilisation des fonctions des axes
parallèles.
En plus des axes principaux X, Y et Z , il y a les axes qui leurs sont
parallèles U, V et W. Les axes principaux et les axes parallèles sont
associés d'une manière parfaitement définie :
Axe principal
Axe parallèle
Axe rotatif
X
U
A
Y
V
B
Z
W
C
Y
W+
C+
B+
Pour l'usinage avec les axes parallèles U, V et W, la TNC proposent les
fonctions suivantes :
Softkey
Z
Fonction
Signification
PARAXCOMP
Définir le comportement
de la TNC lors de
positionnement des axes
parallèles
Page 330
PARAXMODE
Définir avec quels axes la
TNC doit exécuter
l'usinage
Page 330
V+
X
A+
U+
Page
Après la mise en service de la TNC, la configuration
standard est active par principe.
La TNC annule les fonctions des axes parallèles avec les
fonctions suivantes :
„ Choix d'un programme
„ Fin du programme
„ M2 ou M30
„ Interruption de programme (PARAXCOMP reste actif)
„ PARAXCOMP OFF ou PARAXMODE OFF
Avant le changement de la cinématique de la machine, les
fonctions des axes parallèles doivent être désactivées.
HEIDENHAIN TNC 320
327
10.2 Travailler avec les axes parallèles U. V et W
10.2 Travailler avec les axes
parallèles U. V et W
10.2 Travailler avec les axes parallèles U. V et W
AFFICHAGE FONCTION PARAXCOMP
Avec la fonction AFFICHAGE PARAXCOMP, vous commutez l'affichage des
fonctions des déplacements des axes parallèles. La TNC tient compte
des déplacements de l'axe parallèle dans l'affichage des positions de
l'axe principal correspondant (affichage de la somme) L'affichage des
positions de l'axe principale affiche ainsi toujours la distance relative
entre l'outil et la pièce, indépendamment du fait que l'axe principal ou
l'axe secondaire se déplace.
Exemple : Séquence CN
13 FONCTION PARAXCOMP AFFICHAGE W
Pour la définition, procédez de la façon suivante :
328
U
Afficher la barre de softkeys avec les fonctions
spéciales
U
Choisir le menu de définition des diverses fonctions
conversationnelles
U
Choisir FONCTION PARAX
U
Choisir FONCTION PARAXCOMP
U
Choisir AFFICHAGE FONCTION PARAXCOMP
U
Définir les axes parallèles, dont les déplacements
doivent être pris en compte par la TNC dans
l'affichage des axes principaux correspondant
Programmation : fonctions spéciales
10.2 Travailler avec les axes parallèles U. V et W
FONTION PARAXCOMP MOVE
Exemple : Séquence CN
La fonction PARAXCOMP MOVE ne peut être utilisée qu'en
liaison avec des séquences de droites (L).
13 FONCTION PARAXCOMP MOVE W
Avec la fonction PARAXCOMP MOVE, la TNC compense les déplacements
parallèles par des déplacements de compensation des axes
principaux. correspondants.
Si par exemple, un déplacement de l'axe parallèle W est exécuté dans
le sens négatif, simultanément l'axe principal Z se déplace de la même
valeur dans le sens positif. La distance relative de l'outil par rapport à
la pièce reste identique. Application avec machine à portique : rentrer
le fourreau de la broche et descendre la traverse de manière
synchrone.
Pour la définition, procédez de la façon suivante :
U
Afficher la barre de softkeys avec les fonctions
spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Choisir FONCTION PARAX
U
Choisir FONCTION PARAXCOMP
U
Choisir FONCTION PARAXCOM
U
Définir l'axe parallèle
HEIDENHAIN TNC 320
329
10.2 Travailler avec les axes parallèles U. V et W
FONTION PARAXCOMP OFF
Avec la fonction PARAXCOMP OFF, vous mettez hors service les
fonctions des axes parallèles AFFICHAGE PARAXCOMP et PARAXCOMP MOVE
Pour la définition, procédez de la façon suivante :
U
Afficher la barre de softkeys avec les fonctions
spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Choisir FONCTION PARAX
U
Choisir FONCTION PARAXCOMP
U
Choisir FONCTION PARAXCOMP OFF Si vous souhaitez
mettre hors service les fonctions des axes parallèles
individuellement, alors indiquez cet axe en plus
Exemple : Séquences CN
13 FONCTION PARAXCOMP OFF
13 FONCTION PARAXCOMP OFF W
FONTION PARAXMODE
Exemple : Séquence CN
Vous devez toujours définir 3 axes pour activer la fonction
PARAXMODE.
13 FONCTION PARAXMODE X Y W
Si vous combinez les fonctions PARAXMODE et PARAXCOMP , la
TNC désactive la fonction PARAXCOMP pour un axe défini
dans les deux fonctions. Après avoir désactivé PARAXMODE,
la fonction PARAXCOMP est à nouveau active.
Avec la fonction PARAXMODE, vous définissez les axes avec lesquels la
TNC doit exécuter l'usinage. Tous les déplacements et descriptions de
contour sont à programmer indépendamment de la machine au
moyen des axes X, Y et Z.
Définissez avec la fonction PARAXMODE 3 axes(p.ex. FONCTION
PARAXMODE X Y W), avec lesquels la TNC devra exécuter les
déplacements programmés.
Pour la définition, procédez de la façon suivante :
330
U
Afficher la barre de softkeys avec les fonctions
spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Choisir FONCTION PARAX
U
Choisir FONCTION PARAXMODE
U
Choisir FONCTION PARAXMODE
U
Définir les axes d'usinage
Programmation : fonctions spéciales
10.2 Travailler avec les axes parallèles U. V et W
Déplacer l'axe principal et l'axe parallèle simultanément
Si la fonction PARAXMODE est active, la TNC exécute les déplacements
programmés dans les axes définis dans la fonction. Si la TNC doit
déplacer simultanément un axe parallèle et son axe principal
correspondant, vous pouvez introduire cet axe en plus avec le signe &.
L'axe avec le caractère & se réfère alors à l'axe principal.
Exemple : Séquence CN
13 FONCTION PARAXMODE X Y W
14 L Z+100 &Z+150 R0 FMAX
L'élément de syntaxe „&“ n'est autorisé que dans des
séquences L.
Le positionnement auxiliaire d'un axe principal au moyen de
l'instruction „&“ s'effectue dans le système REF. Si
l'affichage de position est réglée sur „valeur effective“, ce
déplacement ne sera pas affiché. Commuter l'affichage de
position sur „valeur REF“ si nécessaire
HEIDENHAIN TNC 320
331
10.2 Travailler avec les axes parallèles U. V et W
FONCTION PARAXMODE OFF
Les fonctions des axes parallèles sont désactivés avec la fonction
PARAXCOMP OFF. La TNC utilise les axes principaux configurés par le
constructeur de la machine. Pour la définition, procédez de la façon
suivante :
332
U
Afficher la barre de softkeys des fonctions spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Choisir FONCTION PARAX
U
Choisir FONCTION PARAXMODE
U
Choisir FUNCTION PARAXMODE OFF
Exemple : Séquence CN
13 FONCTION PARAXCOMP OFF
Programmation : fonctions spéciales
10.3 Fonctions de fichiers
10.3 Fonctions de fichiers
Application
Les fonctions FUNCTION FILE vous permettent d'exécuter à partir du
programme CN des opérations sur les fichiers : copier, déplacer ou
effacer.
Vous ne devez pas utiliser les fonctions FILE pour les
programmes ou fichiers auxquels vous vous êtes
précédemment référés avec des fonctions telles que CALL
PGM ou CYCL DEF 12 PGM CALL.
Définir les opérations sur les fichiers
U
Sélectionner les fonctions spéciales
U
Sélectionner les fonctions de programme
U
Sélectionner les opérations sur les fichiers : la TNC
affiche les fonctions disponibles
Fonction
Signification
FILE COPY
Copier un fichier:
Indiquer le chemin d'accès du fichier à
copier et celui du fichier-cible.
FILE MOVE
Déplacer un Fichier:
Indiquer le chemin d'accès du fichier à
déplacer et celui du fichier-cible.
EFFACER
FICHIER
Effacer un fichier :
Indiquer le chemin d'accès du fichier à
effacer
HEIDENHAIN TNC 320
Softkey
333
10.4 Définir les transformations de coordonnées
10.4 Définir les transformations de
coordonnées
Résumé
En alternative au cycle de transformation de coordonnées 7 DECALAGE
DU POINT ZERO, vous pouvez aussi utiliser la fonction Texte clair TRANS
DATUM. Comme avec le cycle 7, TRANS DATUM vous permet de
programmer directement des valeurs de décalage ou d'activer une
ligne du tableau de points zéro. Vous disposez en outre de la fonction
TRANS DATUM RESET avec laquelle vous pouvez annuler très simplement
un décalage de point zéro actif.
TRANS DATUM AXIS
La fonction TRANS DATUM AXIS permet de définir un décalage de point
zéro en introduisant des valeurs pour l'axe concerné. Dans un
séquence, vous pouvez définir jusqu'à 9 coordonnées; l'introduction
en incrémental est possible. Pour la définition, procédez de la façon
suivante :
U
Afficher la barre de softkeys des fonctions spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Sélectionner les transformations
U
Sélectionner décalage de point zéro TRANS DATUM
U
Introduire le décalage de point zéro dans l'axe désiré,
valider avec la touche ENT
Exemple : Séquence CN
13 TRANS DATUM AXIS X+10 Y+25 Z+42
Les valeurs absolues introduites se réfèrent au point zéro
pièce défini par initialisation du point d'origine ou par une
valeur de présélection du tableau Preset.
Les valeurs incrémentales se réfèrent toujours au dernier
point zéro valide (et qui peut être déjà décalé).
334
Programmation : fonctions spéciales
10.4 Définir les transformations de coordonnées
TRANS DATUM TABLE
La fonction TRANS DATUM TABLE permet de définir un décalage de point
zéro en sélectionnant un numéro dans un tableau de points zéro. Pour
la définition, procédez de la façon suivante :
U
Afficher la barre de softkeys des fonctions spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Sélectionner les transformations
U
Sélectionner décalage de point zéro TRANS DATUM
U
Retour à TRANS AXIS
U
Sélectionner le décalage de point zéro TRANS DATUM
TABLE
U
Si nécessaire, introduire le nom du tableau de points
zéro à partir duquel vous voulez activer le numéro de
point zéro ; valider avec la touche ENT. Si vous ne
voulez pas définir un tableau de points zéro, appuyez
sur NO ENT
U
Introduire le numéro de la ligne que la TNC doit
activer; valider avec la touche ENT
Exemple : Séquence CN
13 TRANS DATUM TABLE TABLINE25
Si vous n'avez défini aucun tableau de points zéro dans la
séquence TRANS DATUM TABLE, la TNC utilise le tableau
sélectionné auparavant dans le programme CN avec SEL
TABLE ou bien le tableau de points (état M) sélectionné
dans un mode Exécution de programme.
TRANS DATUM RESET
La fonction TRANS DATUM RESET permet d'annuler un décalage de point
zéro. La manière dont vous avez défini auparavant le point zéro n'a pas
d'importance. Pour la définition, procédez de la façon suivante :
U
Afficher la barre de softkeys des fonctions spéciales
U
Choisir le menu de définition de diverses fonctions
conversationnelles
U
Sélectionner les transformations
U
Sélectionner décalage de point zéro TRANS DATUM
U
Retour à TRANS AXIS
U
Sélectionner le décalage de point zéro TRANS DATUM
RESET
HEIDENHAIN TNC 320
Exemple : Séquence CN
13 TRANS DATUM RESET
335
10.5 Créer des fichiers-texte
10.5 Créer des fichiers-texte
Application
Sur la TNC, vous pouvez créer et modifier des textes à l’aide d’un
éditeur de texte. Pour cela, connecter un clavier USB à la TNC.
Applications typiques :
„ Conserver des valeurs expérimentales
„ Informer sur des étapes d’usinage
„ Créer une collection de formules
Les fichiers-texte sont des fichiers de type .A (ASCII). Si vous
souhaitez traiter d'autres fichiers, vous devez d'abord les convertir en
fichiers .A.
Ouvrir et quitter un fichier-texte
U
U
U
U
Sélectionner le mode Mémorisation/édition de programme
Appeler le gestionnaire de fichiers : appuyer sur la touche PGM MGT
Afficher les fichiers de type .A: Appuyer sur la softkey SELECT.
TYPE puis sur la softkey AFFICHER .A
Sélectionner le fichier et l'ouvrir avec la softkey SELECT. ou avec la
touche ENT ou ouvrir un nouveau fichier: introduire le nouveau nom,
valider avec la touche ENT
Si vous désirez quitter l'éditeur de texte, appelez le gestionnaire de
fichiers et sélectionnez un fichier d'un autre type, un programme
d'usinage, par exemple.
Déplacements du curseur
Softkey
Curseur un mot vers la droite
Curseur un mot vers la gauche
Curseur à la page d’écran suivante
Curseur à la page d’écran précédente
Curseur en début de fichier
Curseur en fin de fichier
336
Programmation : fonctions spéciales
10.5 Créer des fichiers-texte
Editer des textes
Un champ d'informations, affichant le nom du fichier, le lieu et
l'information de la ligne, se trouve au dessus de la première ligne de
l'éditeur de texte.
Fichier:
Ligne:
Colonne:
Nom du fichier-texte
Position ligne courante du curseur
Position colonne courante du curseur
Le texte est inséré à l’endroit où se trouve actuellement le curseur.
Vous déplacez le curseur à l’aide des touches fléchées à n’importe
quel endroit du fichier-texte.
La ligne sur laquelle se trouve le curseur ressort en couleur. Vous
pouvez décomposer les lignes avec la touche Return ou ENT.
HEIDENHAIN TNC 320
337
10.5 Créer des fichiers-texte
Effacer des caractères, mots et lignes et les
insérer à nouveau
Avec l’éditeur de texte, vous pouvez effacer des lignes ou mots
entiers pour les insérer à un autre endroit.
U
U
U
Déplacer le curseur sur le mot ou sur la ligne à effacer et à insérer à
un autre endroit
Appuyer sur la softkey EFFACER MOT ou EFFACER LIGNE : le texte
est supprimé et mis en mémoire-tampon
Déplacer le curseur à la position d'insertion du texte et appuyer sur
la softkey INSERER LIGNE/MOT
Fonction
Softkey
Effacer une ligne et la mettre en mémoire
tampon
Effacer un mot et le mettre en mémoire tampon
Effacer un caractère et le mettre en mémoire
tampon
Insérer une ligne ou un mot après effacement
338
Programmation : fonctions spéciales
10.5 Créer des fichiers-texte
Modifier des blocs de texte
Vous pouvez copier, effacer et insérer à un autre endroit des blocs de
texte de n’importe quelle grandeur. Dans tous les cas, vous devez
d’abord sélectionner le bloc de texte souhaité :
U
Marquer le bloc de texte : déplacer le curseur sur le caractère à partir
duquel la sélection du texte doit être ouverte
U Appuyer sur la softkey SELECT. BLOC
U
Déplacer le curseur sur le caractère qui doit fermer la
sélection du texte. Si vous faites glisser directement
le curseur à l'aide des touches fléchées vers le haut
et le bas, les lignes de texte intermédiaires seront
toutes sélectionnées – Le texte sélectionné est en
couleur
Après avoir sélectionné le bloc de texte désiré, continuez à traiter le
texte à l’aide des softkeys suivantes:
Fonction
Softkey
Effacer le bloc marqué et le mettre en mémoire
Mettre le texte marqué en mémoire tampon,
sans l'effacer (copier)
Si vous désirez insérer à un autre endroit le bloc mis en mémoire
tampon, exécutez également les étapes suivantes :
U
Déplacer le curseur à la position d’insertion du bloc de texte contenu
dans la mémoire tampon
U Appuyer sur la softkey INSERER BLOC : le texte est
inséré
Tant que le texte est dans la mémoire tampon, vous pouvez l’insérer
autant de fois que vous souhaitez.
Transférer un bloc sélectionné dans un autre fichier
U Sélectionner le bloc de texte tel que décrit précédemment
U Appuyer sur la softkey TRANSF. A FICHIER. La TNC
affiche le dialogue Fichier-cible =
U
Introduire le chemin d’accès et le nom du fichier-cible.
La TNC ajoute le bloc de texte sélectionné au fichiercible. Si aucun fichier-cible ne correspond au nom
introduit, la TNC inscrit le texte sélectionné dans un
nouveau fichier
Insérer un autre fichier à la position du curseur
U Déplacer le curseur à l’endroit où vous désirez insérer un nouveau
fichier-texte
U Appuyer sur la softkey INSERER FICHIER. La TNC
affiche le dialogue Nom de fichier =
U
Introduire le chemin d'accès et le nom du fichier que
vous désirez insérer
HEIDENHAIN TNC 320
339
10.5 Créer des fichiers-texte
Recherche de parties de texte
La fonction de recherche de l’éditeur de texte est capable de
rechercher des mots ou chaînes de caractères à l’intérieur du texte.
Il existe pour cela deux possibilités.
Trouver le texte actuel
La fonction de recherche doit trouver un mot correspondant au mot
sur lequel se trouve actuellement le curseur:
U
U
U
U
Déplacer le curseur sur le mot souhaité
Sélectionner la fonction de recherche: Appuyer sur la softkey
RECHERCHE
Appuyer sur la softkey CHERCHER MOT ACTUEL
Abandonner la fonction de recherche : appuyer sur la softkey FIN
Trouver n'importe quel texte
U Sélectionner la fonction de recherche : appuyer sur la softkey
RECHERCHE. La TNC affiche le dialogue Cherche texte :
U Introduire le texte à rechercher
U Rechercher le texte : appuyer sur la softkey EXECUTER
U Abandonner la fonction de recherche : appuyer sur la softkey FIN
340
Programmation : fonctions spéciales
Programmation :
usinage multiaxes
11.1 Fonctions réservées à l'usinage multiaxes
11.1 Fonctions réservées à l'usinage
multiaxes
Ce chapitre regroupe les fonctions TNC qui ont un rapport avec
l'usinage multiaxes :
Fonction TNC
Description
Page
PLANE
Définir les opérations d'usinage dans le plan d'usinage incliné
Page 343
M116
Avance des axes rotatifs
Page 364
M126
Déplacement des axes rotatifs avec optimisation de course
Page 365
M94
Réduire la valeur d'affichage des axes rotatifs
Page 366
M138
Sélection d'axes inclinés
Page 367
M144
Prise en compte de la cinématique de la machine
Page 368
342
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
11.2 La fonction PLANE : inclinaison
du plan d'usinage (Logiciel
Option 1)
Introduction
Les fonctions d'inclinaison du plan d'usinage doivent être
validées par le constructeur de votre machine!
La fonction PLANE ne peut être entièrement efficace que
sur des machines qui possèdent au moins deux axes
rotatifs (table et/ou tête). Exception : vous pouvez aussi
utiliser la fonction PLANE AXIAL si un seul axe rotatif est
présent ou actif sur votre machine.
Avec la fonction PLANE (de l'anglais plane = plan), vous disposez d'une
fonction performante permettant de définir de diverses manières des
plans d'usinage inclinés.
Toutes les fonctions PLANE disponibles dans la TNC décrivent le plan
d'usinage souhaité indépendamment des axes rotatifs réellement
présents sur votre machine. Vous disposez des possibilités suivantes :
Fonction
Paramètres nécessaires
SPATIAL
Trois angles dans l'espace
SPA, SPB, SPC
Page 347
PROJETÉ
Deux angles de projection
PROPR et PROMIN ainsi qu'un
angle de rotation ROT
Page 349
EULER
Trois angles d'Euler
Précession (EULPR),
Nutation (EULNU) et Rotation
propre(EULROT),
Page 351
VECTEUR
Vecteur normal pour
définition du plan et vecteur
de base pour définition du
sens de l'axe X incliné
Page 353
POINTS
Coordonnées de trois
points quelconques du plan
à incliner
Page 355
RELATIF
Un seul angle dans
l'espace, agissant de
manière incrémentale
Page 357
HEIDENHAIN TNC 320
Softkey
Page
343
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Fonction
Paramètres nécessaires
Softkey
Page
AXIAL
Jusqu'à trois angles d'axes
absolus ou incrémentaux
A, B, C
Page 358
RESET
Annuler la fonction PLANE
Page 346
La définition des paramètres de la fonction PLANE se fait en
deux parties :
„ La définition géométrique du plan est différente pour
chacune des fonctions PLANE disponibles
„ Le comportement de positionnement de la fonction
PLANE, qui est indépendante de la définition du plan et
identique pour toutes les fonctions PLANE (voir „Définir
le comportement de positionnement de la fonction
PLANE” à la page 360)
La fonction transfert de la position effective n'est pas
possible quand l'inclinaison du plan d'usinage est active.
Quand vous utilisez la fonction PLANE avec la fonction M120
active, la TNC annule automatiquement la correction de
rayon et, également la fonction M120.
Par principe, les fonctions PLANE doivent toujours être
annulées avec PLANE RESET. Le fait d'introduire 0 dans tous
les paramètres PLANE n'annule pas complètement la
fonction.
344
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Définir la fonction PLANE
U
Afficher la barre de softkeys des fonctions spéciales
U
Sélectionner la fonction PLANE : appuyer sur la softkey
INCLINAISON PLAN D'USINAGE : la TNC affiche
dans la barre de softkeys les choix de définition
disponibles
Choisir la fonction
U
Sélectionner directement par softkey la fonction désirée : la TNC
poursuit le dialogue et demande les paramètres nécessaires
Affichage de positions
Dès qu'une fonction PLANE est activée, la TNC affiche l'angle dans
l'espace calculé dans l'affichage d'état supplémentaire (voir figure).
Quelle que soit la fonction PLANE utilisée, la TNC calcule en fin de
compte toujours en interne l'angle dans l'espace.
HEIDENHAIN TNC 320
345
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Annulation de la fonction PLANE
U
Afficher la barre de softkeys des fonctions spéciales
U
Sélectionner les fonctions spéciales : appuyez sur la
softkey FONCTION SPÉCIALE TNC
U
Sélectionner la fonction PLANE : appuyer sur la
softkey INCLINAISON PLAN D'USINAGE : la TNC
affiche dans la barre de softkeys les choix disponibles
U
Sélectionner la fonction à annuler : ainsi la fonction
PLANE est annulée en interne, mais les positions
actuelles des axes ne sont en rien modifiées
U
Définir si la TNC doit déplacer les axes inclinés
automatiquement à la position par défaut (MOVE) ou
TURN), ou non (STAY), (voir „inclinaison automatique :
MOVE/TURN/STAY (introduction impérative)” à la page
360)
U
Terminer la saisie des données : appuyer sur la touche
END
Exemple : Séquence CN
25 PLANE RESET MOVE DIST50 F1000
La fonction PLANE RESET annule complètement la fonction
PLANE active – ou un cycle 19 actif (angle = 0 et fonction
inactive). Une définition multiple n'est pas nécessaire.
346
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Définir le plan d'usinage avec les angles dans
l'espace : PLANE SPATIAL
Application
Les angles dans l'espace définissent un plan d'usinage avec jusqu'à
trois rotations autour du système de coordonnées machine.
L'ordre des rotations est défini avec d'abord une rotation autour de
l'axe A, puis autour de B, puis autour de C (la méthode correspond à
celle du cycle 19 si les données introduites dans le cycle 19 ont été
réglées sur l'angle dans l'espace).
Remarques avant de programmer
Vous devez toujours définir les trois angles dans l'espace
SPA, SPB et SPC, même si l'un d'entre eux est égal à 0.
L'ordre des rotations défini préalablement est valable
indépendamment de l'axe d'outil actif.
Description des paramètres pour le comportement du
positionnement : voir „Définir le comportement de
positionnement de la fonction PLANE”, page 360
HEIDENHAIN TNC 320
347
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Paramètres d'introduction
U Angle dans l'espace A?: Angle de rotation SPA autour
de l'axe machine X (voir figure en haut à droite). Plage
d'introduction -359.9999° à +359.9999°
U
Angle dans l'espace B?: Angle de rotation SPB autour
de l'axe machine Y (voir figure en haut à droite). Plage
d'introduction -359.9999° à +359.9999°
U
Angle dans l'espace C?: Angle de rotation SPC autour
de l'axe machine Z (voir figure de droite, au centre).
Plage d'introduction -359.9999° à +359.9999°
U
Poursuivre avec les propriétés de positionnement
(voir „Définir le comportement de positionnement de
la fonction PLANE” à la page 360)
Abréviations utilisées
Abréviation
Signification
SPATIAL
en Angl. spatial =dans l'espace
SPA
spatial A : Rotation autour de l'axe X
SPB
spatial B : Rotation autour de l'axe Y
SPC
spatial C : Rotation autour de l'axe Z
Exemple : Séquence CN
5 PLANE SPATIAL SPA+27 SPB+0 SPC+45 .....
348
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Définir le plan d'usinage avec les angles de
projection : PLAN PROJETE
Application
Les angles de projection définissent un plan d'usinage en indiquant
deux angles que vous pouvez déterminer par projection du 1er plan de
coordonnées (Z/X avec axe d'outil Z) et du 2ème plan de coordonnées
(Y/Z avec axe d'outil Z) dans le plan d'usinage à définir.
Remarques avant de programmer
Vous ne pouvez utiliser les angles de projection que si les
définitions d'angles se réfèrent à un parallélépipède
rectangle. Sinon, des déformations sur la pièce peuvent
apparaître
Description des paramètres pour le comportement du
positionnement : voir „Définir le comportement de
positionnement de la fonction PLANE”, page 360
HEIDENHAIN TNC 320
349
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Paramètres d'introduction
U Angle proj. 1er plan de coord.? : angle projeté
du plan d'usinage incliné dans le 1er plan de
coordonnées du système de coordonnées
machine (Z/X avec axe d'outil Z, voir figure en
haut à droite). Plage d'introduction –89.9999° à
+89.9999°. L'axe 0° est l'axe principal du plan
d'usinage actif (X avec axe d'outil Z, sens positif,
voir figure en haut à droite)
U
Angle proj. 2ème plan de coord.? : angle projeté
dans le 2ème plan de coordonnées du système de
coordonnées machine (Y/Z avec axe d'outil Z, voir
figure en haut à droite). Plage d'introduction
-89.9999° à +89.9999°. L'axe 0° est l'axe secondaire
du plan d'usinage actif (Y avec axe d'outil Z)
U
Angle ROT du plan incliné? : rotation du système de
coordonnées incliné autour de l'axe d'outil incliné (par
analogie, correspond à une rotation avec le cycle 10
ROTATION). Avec l'angle de rotation, vous pouvez
déterminer de manière simple le sens de l'axe
principal du plan d'usinage (X avec axe d'outil Z, Z
avec axe d'outil Y, voir figure de droite, au centre).
Plage d'introduction -360° à +360°
U
Poursuivre avec les propriétés de positionnement
(voir „Définir le comportement de positionnement de
la fonction PLANE” à la page 360)
Séquence CN
5 PLANE PROJETÉ PROPR+24 PROMIN+24 PROROT+30 .....
Abréviations utilisées
Abréviation
Signification
PROJETE
de l'anglais projected = projeté
PROPR
principle plane : plan principal
PROPR
minor plane : Plan secondaire
PROPR
En anglais rotation : rotation
350
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Définir le plan d'usinage avec les angles d'Euler :
PLANE EULER
Application
Les angles d'Euler définissent un plan d'usinage avec jusqu'à trois
rotations autour du système de coordonnées incliné. Les trois
angles d'Euler ont été définis par le mathématicien suisse Euler.
Transposé au système de coordonnées machine, il en résulte les
définitions suivantes :
Angle de
précession EULPR
Angle de nutation
EULNU
Angle de rotation
EULROT
Rotation du système de coordonnée autour de
l'axe Z
Rotation du système de coordonnées autour de
l'axe X ayant subit une rotation de l'angle de
précession
Rotation du plan d'usinage incliné autour de l'axe
incliné Z
Remarques avant de programmer
L'ordre des rotations défini préalablement est valable
indépendamment de l'axe d'outil actif.
Description des paramètres pour le comportement du
positionnement : voir „Définir le comportement de
positionnement de la fonction PLANE”, page 360
HEIDENHAIN TNC 320
351
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Paramètres d'introduction
U Angle rot. Plan coord. princip.? : angle de rotation
EULPR autour de l'axe Z (voir figure en haut à droite)
Remarque :
„ Plage d'introduction: -180.0000° à 180.0000°
„ L'axe 0° est l'axe X
U
Angle d’inclinaison axe d’outil? : angle
d'inclinaison EULNUT du système de coordonnées
autour de l'axe X tourné de la valeur de l'angle de
précession (voir figure de droite, au centre).
Remarque :
„ Plage d'introduction : 0° à 180.0000°
„ L'axe 0° est l'axe Z
U
Angle ROT du plan incliné? : rotation EULROT du
système de coordonnées incliné autour de l'axe Z
incliné (par analogie, correspond à une rotation avec
le cycle 10 ROTATION). Avec l'angle de rotation, vous
pouvez déterminer de manière simple le sens de l'axe
X dans le plan d'usinage incliné (voir figure en bas et
à droite). Remarque :
„ Plage d'introduction : 0° à 360.0000°
„ L'axe 0° est l'axe X
U
Poursuivre avec les propriétés de positionnement
(voir „Définir le comportement de positionnement de
la fonction PLANE” à la page 360)
Séquence CN
5 PLANE EULER EULPR45 EULNU20 EULROT22 .....
Abréviations utilisées
Abréviation
Signification
EULER
Mathématicien suisse ayant défini les angles dits
d'Euler
EULPR
Angle de Précession : angle décrivant la rotation
du système de coordonnées autour de l'axe Z
EULNU
Angle de Nutation: Angle décrivant la rotation du
système de coordonnées autour de l'axe X qui a
subi une rotation de la valeur de l'angle de
précession
EULROT
Angle de Rotation : angle décrivant la rotation
du plan d'usinage incliné autour du nouvel axe
incliné Z
352
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Définir le plan d'usinage par deux vecteurs :
PLANE VECTOR
Application
Vous pouvez utiliser la définition d'un plan d'usinage au moyen de
deux vecteurs si votre système CAO est capable de calculer le
vecteur de base et le vecteur normal du plan d'usinage. Une
introduction standard n'est pas nécessaire. La TNC calcule la
standardisation en interne, de manière à pouvoir introduire des valeur
comprises entre -9.999999 et +9.999999.
Le vecteur de base nécessaire à la définition du plan d'usinage est
défini par les composantes BX, BY et BZ (voir fig. en haut à droite). Le
vecteur normal est défini par les composantes NX, NY et NZ.
Le vecteur de base définit le sens de l'axe X dans le plan d'usinage
incliné, le vecteur normal définit le sens de l'axe d'outil et est
perpendiculaire au plan incliné.
Remarques avant de programmer
En interne, la TNC calcule des vecteurs normés à partir
des valeurs que vous avez introduites.
Description des paramètres pour le comportement du
positionnement : voir „Définir le comportement de
positionnement de la fonction PLANE”, page 360
HEIDENHAIN TNC 320
353
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Paramètres d'introduction
U Composante X du vecteur de base? : composante X
BX du vecteur de base B (voir . figure en haut à droite).
Plage d'introduction : -9.9999999 à +9.9999999
U
Composante Y du vecteur de base? : composante Y
BY du vecteur de base B (voir figure en haut à droite).
Plage d'introduction : -9.9999999 à +9.9999999
U
Composante Z du vecteur de base? : composante Z
BZ du vecteur de base B (voir figure en haut à droite).
Plage d'introduction : -9.9999999 à +9.9999999
U
Composante X du vecteur normal? : composante X NX
du vecteur normal N (voir figure de droite, au centre).
Plage d'introduction : -9.9999999 à +9.9999999
U
Composante Y du vecteur normal? : composante Y NY
du vecteur normal N (voir figure de droite, au centre).
Plage d'introduction : -9.9999999 à +9.9999999
U
Composante Z du vecteur normal? : composante Z NZ
du vecteur normal N (voir figure en bas à droite). Plage
d'introduction : -9.9999999 à +9.9999999
U
Poursuivre avec les propriétés de positionnement
(voir „Définir le comportement de positionnement de
la fonction PLANE” à la page 360)
Séquence CN
5 PLANE VECTOR BX0.8 BY-0.4 BZ0.4472 NX0.2 NY0.2 NZ0.9592 ...
Abréviations utilisées
Abréviation
Signification
VECTEUR
de l'anglais vector = vecteur
BX, BY, BZ
Vecteur de Base : composantes X, Y et Z
NX, NY, NZ
Vecteur Normal : composantes X, Y et Z
354
Programmation : usinage multiaxes
Application
Un plan d'usinage peut être défini sans ambiguïté au moyen de trois
points de ce plan au choix P1 à P3. Cette possibilité est réalisée avec
la fonction PLANE POINTS.
P3
P2
Remarques avant de programmer
La droite reliant le point 1 au point 2 détermine le sens de
l'axe principal incliné (X avec axe d'outil Z).
Vous définissez le sens de l'axe d'outil incliné avec la
position du 3ème point par rapport à la droite reliant le
point 1 et le point 2. En tenant compte de la règle de la
main droite (pouce = axe X, index = axe Y, majeur = axe Z,
voir. figure en haut et à droite), le pouce (axe X) est orienté
du point 1 vers le point 2, l'index (axe Y) est orienté
parallèlement à l'axe incliné Y, en direction du point 3 et le
majeur est orienté en direction de l'axe d'outil incliné.
+Z
P1
+X
+Y
Les trois points définissent la pente du plan. La position du
point zéro actif n'est pas modifiée par la TNC.
Description des paramètres pour le comportement du
positionnement : voir „Définir le comportement de
positionnement de la fonction PLANE”, page 360
HEIDENHAIN TNC 320
355
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Définir le plan d'usinage par trois points :
PLANE POINTS
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Paramètres d'introduction
U Coordonnée X 1er point du plan? : coordonnée X P1X
du premier point du plan (voir figure en haut à droite)
U
Coordonnée Y 1er point du plan? : coordonnée Y P1Y
du premier point du plan (voir figure en haut à droite)
U
Coordonnée Z 1er point du plan? : coordonnée Z P1Z
du 1er point du plan (voir figure en haut à droite)
U
Coordonnée X 2ème point du plan? : coordonnée X
P2X du 2ème point du plan (voir figure de droite, au
centre)
U
Coordonnée Y 2ème point du plan? : coordonnée Y
P2Y du 2ème point du plan (voir figure de droite, au
centre)
U
Coordonnée Z 2ème point du plan? : coordonnée Z
P2Z du 2ème point du plan (voir figure de droite, au
centre)
U
Coordonnée X 3ème point du plan? : coordonnée X
P3X du 3ème point du plan (voir figure en bas et à
droite)
U
Coordonnée Y 3ème point du plan? : coordonnée Y
P3Y du 3ème point du plan (voir figure en bas et à
droite)
U
Coordonnée Z 3ème point du plan? : coordonnée Z
P3Z du 3ème point du plan (voir figure en bas et à
droite)
U
Poursuivre avec les propriétés de positionnement
(voir „Définir le comportement de positionnement de
la fonction PLANE” à la page 360)
Séquence CN
5 PLANE POINTS P1X+0 P1Y+0 P1Z+20 P2X+30 P2Y+31 P2Z+20
P3X+0 P3Y+41 P3Z+32.5 .....
Abréviations utilisées
Abréviation
Signification
POINTS
De l'Anglais points = points
356
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Définir le plan d'usinage au moyen d'un seul
angle incrémental dans l'espace : PLANE
RELATIVE
Application
Vous utilisez les angles dans l'espace incrémentaux lorsqu'un plan
d'usinage actif déjà incliné doit être incliné par une autre rotation.
Exemple : réaliser un chanfrein à 45° sur un plan incliné.
Remarques avant de programmer
L'angle défini agit toujours par rapport au plan d'usinage
actif et ce, quelle que soit la fonction utilisée pour l'activer.
Vous pouvez programmer successivement autant de
fonctions PLANE RELATIVE que vous le souhaitez.
Quand vous souhaitez revenir au plan d'usinage qui était
actif avant la fonction PLANE RELATIVE, alors vous
définissez PLANE RELATIVE avec le même angle, mais avec
un signe inversé.
Quand vous utilisez PLANE RELATIVE sur un plan d'usinage
non incliné, faites simplement pivoter le plan non incliné
autour de l'angle dans l'espace que vous avez défini avec
la fonction PLANE.
Description des paramètres pour le comportement du
positionnement : voir „Définir le comportement de
positionnement de la fonction PLANE”, page 360
Paramètres d'introduction
U Angle incrémental? : angle dans l'espace en fonction
duquel le plan d'usinage actif doit encore être incliné
(voire figure en haut à droite). Choisir avec une
softkey l'axe autour duquel le plan doit être incliné.
Plage d'introduction : -359.9999° à +359.9999°
U
Poursuivre avec les propriétés de positionnement
(voir „Définir le comportement de positionnement de
la fonction PLANE” à la page 360)
Abréviations utilisées
Abréviation
Signification
RELATIF
de l'anglais relative = par rapport à
Exemple : Séquence CN
5 PLANE RELATIF SPB-45 .....
HEIDENHAIN TNC 320
357
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Plan d'usinage défini avec angles d'axes : PLANE
AXIAL (fonction FCL 3)
Application
La fonction PLANE AXIAL définit à la fois la position du plan d’usinage
et les coordonnées nominales des axes rotatifs. Cette fonction est
facile à mettre en œuvre, notamment sur les machines avec
cinématiques orthogonales et avec cinématiques avec un seul axe
rotatif actif.
Vous pouvez aussi utiliser la fonction PLANE AXIAL si un
seul axe rotatif est actif sur votre machine.
Vous pouvez utiliser la fonction PLANE RELATIV après la
fonction PLANE AXIAL si votre machine autorise des
définitions d'angles dans l'espace. Consultez le manuel de
votre machine.
Remarques avant de programmer
N'introduire que des angles d'axes réellement présents
sur votre machine; sinon la TNC délivre un message
d'erreur.
Les coordonnées d’axes rotatifs définies avec PLANE
AXIAL ont un effet modal. Les définitions multiples se
cumulent donc, l'introduction de valeurs incrémentales
est autorisée.
Pour annuler la fonction PLANE AXIAL, utiliser la fonction
PLANE RESET. Une annulation en introduisant 0 ne
désactive pas PLANE AXIAL.
Les fonctions SEQ, TABLE ROT et COORD ROT sont
inopérantes avec PLANE AXIAL.
Description des paramètres pour le comportement du
positionnement : voir „Définir le comportement de
positionnement de la fonction PLANE”, page 360
358
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Paramètres d'introduction
U Angle d'axe A? : angle de rotation que doit exécuter
l'axe A. En incrémental, il s’agit alors de l'angle avec
lequel l'axe A doit s'orienter par rapport à la position
actuelle. Plage d'introduction : -99999,9999° à
+99999,9999°
U
Angle d'axe B? : angle de rotation que doit exécuter
l'axe B. En incrémental, il s’agit alors de l’angle
supplémentaire de rotation de l'axe B par rapport à
la position actuelle. Plage d'introduction :
-99999,9999° à +99999,9999°
U
Angle d'axe C? : angle de rotation que doit exécuter
l'axe C. En incrémental, il s’agit alors de l’angle
supplémentaire de rotation de l'axe C par rapport à
la position actuelle. Plage d'introduction :
-99999,9999° à +99999,9999°
U
Poursuivre avec les propriétés de positionnement
(voir „Définir le comportement de positionnement de
la fonction PLANE” à la page 360)
Abréviations utilisées
Abréviation
Signification
AXIAL
en Anglaisaxial = axial
HEIDENHAIN TNC 320
Exemple : Séquence CN
5 PLANE AXIAL B-45 .....
359
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Définir le comportement de positionnement de
la fonction PLANE
Vue d'ensemble
Indépendamment de la fonction PLANE utilisée pour définir le plan
d'usinage incliné, vous disposez toujours des fonctions suivantes pour
le comportement de positionnement :
„ inclinaison automatique
„ Sélection d'autres possibilités d'inclinaisons
„ Sélection du mode de transformation
inclinaison automatique : MOVE/TURN/STAY (introduction
impérative)
Après avoir introduit tous les paramètres de définition du plan, vous
devez définir la manière dont les axes rotatifs doivent être inclinés aux
valeurs calculées :
U
La fonction PLANE doit incliner automatiquement les
axes rotatifs aux valeurs calculées ; dans ce
processus, la position relative entre la pièce et l'outil
ne change pas. La TNC exécute un déplacement de
compensation sur les axes linéaires
U
La fonction PLANE doit incliner automatiquement les
axes rotatifs aux valeurs calculées ; dans ce
processus, seuls les axes rotatifs sont positionnés. La
TNC n'exécute pas de déplacement de
compensation sur les axes linéaires
U
Vous inclinez les axes rotatifs après une séquence de
positionnement séparée
Quand vous avez sélectionné l'option MOVE (la fonction PLANE doit
effectuer automatiquement l'inclinaison avec déplacement de
compensation), vous devez ensuite définir encore les deux
paramètres Dist. pt rotation de pointe outil et Avance? F= à
définir. Si vous avez sélectionné l'option TURN (la fonction PLANE doit
effectuer automatiquement l'inclinaison sans déplacement de
compensation), vous devez définir ensuite encore le paramètre
Avance? F= à définir. En alternative à une avance F définie directement
avec une valeur numérique, vous pouvez aussi faire exécuter le
déplacement d'orientation avec FMAX (avance rapide) ou FAUTO (avance
à partir de la séquence TOOL CALLT.
Quand vous utilisez la fonction PLANE AXIAL avec STAY,
vous devez alors incliner les axes rotatifs dans une
séquence de positionnement séparée après la fonction
PLANE.
360
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
U
Dist. pt rotation de pointe outil (en incrémental) : la TNC incline
l'outil (la table) autour de la pointe de l'outil. Le paramètre DIST,
permet de décaler le point de rotation de l'inclinaison par rapport à
la position actuelle de la pointe de l'outil.
Attention!
„ Si, avant l'inclinaison, l'outil se trouve à la distance que
vous avez programmée par rapport à la pièce , d'un point
de vue relatif, il se trouve alors à la même position après
l'orientation (voir figure de droite, au centre, 1 = DIST)
„ Si; avant l'inclinaison, l'outil ne se trouve pas à la
distance que vous avez programmée par rapport à la
pièce , d'un point de vue relatif, il se trouve alors décalé
par rapport à la position d'origine après l'inclinaison (voir
figure en bas à droite, 1= DIST)
U
1
1
Avance? F= : vitesse avec laquelle l'outil doit être incliné
inclinaison des axes rotatifs dans une séquence séparée
Quand vous souhaitez incliner les axes rotatifs dans une séquence de
positionnement séparée (option STAY sélectionnée), procédez de la
manière suivante :
Pré-positionner l'outil de manière à éviter toute collision
entre l'outil et la pièce (moyens de bridage) lors de
l'inclinaison
U
U
Sélectionner une fonction PLANE au choix, définir l'inclinaison
automatique avec STAY. Lors de l'usinage, la TNC calcule les valeurs
de positions des axes rotatifs présents sur votre machine et les
mémorise dans les paramètres-système Q120 (axe A), Q121 (axe B)
et Q122 (axe C)
Définir la séquence de positionnement avec les valeurs angulaires
calculées par la TNC
1
1
Exemples de séquences CN : incliner d'un angle dans l'espace B+45°
d'une machine équipée d'un plateau circulaire C et d'une table
pivotante A.
...
12 L Z+250 R0 FMAX
Positionner à une hauteur de sécurité
13 PLANE SPATIAL SPA+0 SPB+45 SPC+0 STAY
Définir la fonction PLANE et l'activer
14 L A+Q120 C+Q122 F2000
Positionner l'axe rotatif en utilisant les valeurs
calculées par la TNC
...
Définir l'usinage dans le plan incliné
HEIDENHAIN TNC 320
361
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Sélection d'alternatives d'inclinaison : SEQ +/– (introduction
optionnelle)
Après que vous ayez défini la position du plan d'usinage, la TNC doit
calculer les positions adéquates des axes rotatifs présents sur votre
machine. En règle générale, il existe toujours deux solutions.
Avec le commutateur SEQ, vous choisissez quelle solution la TNC doit
utiliser :
„ SEQ+ positionne l'axe maître de manière à adopter un angle positif.
L'axe maître est le premier axe en se référant à l'outil ou le dernier
axe rotatif en se référant à la table (dépendant de la configuration de
la machine, voir fig. en haut à droite)
„ SEQ– positionne l'axe maître de manière à adopter un angle négatif.
Si la solution que vous avez choisie avec SEQ n'est pas dans la zone de
déplacement de la machine, la TNC délivre le message d'erreur Angle
non autorisé.
Si vous utilisez la fonction PLANE AXIS, le commutateur SEQ
est inopérant.
Si vous ne définissez pas SEQ, la TNC détermine la solution de la
manière suivante :
1
2
3
4
La TNC vérifie d'abord si les deux solutions sont situées dans la
zone de déplacement des axes rotatifs
Si tel est le cas, la TNC choisit la solution qui peut être atteinte avec
le chemin le plus court
Si une seule solution se situe dans la zone de déplacement, la TNC
retiendra cette solution.
Si aucune solution n'est située dans la zone de déplacement, la
TNC délivre le message d'erreur Angle non autorisé
362
Programmation : usinage multiaxes
11.2 La fonction PLANE : inclinaison du plan d'usinage (Logiciel Option 1)
Exemple d'une machine équipée d'un plateau circulaire C et d'une
table pivotante A. Fonction programmée : PLANE SPATIAL SPA+0
SPB+45 SPC+0
Fin de course
Position de
départ
SEQ
Résultat
position d'axe
Aucun
A+0, C+0
non progr.
A+45, C+90
Aucun
A+0, C+0
+
A+45, C+90
Aucun
A+0, C+0
–
A–45, C–90
Aucun
A+0, C–105
non progr.
A–45, C–90
Aucun
A+0, C–105
+
A+45, C+90
Aucun
A+0, C–105
–
A–45, C–90
–90 < A < +10
A+0, C+0
non progr.
A–45, C–90
–90 < A < +10
A+0, C+0
+
Message
d'erreur
Aucun
A+0, C–135
+
A+45, C+90
Sélection du mode de transformation (introduction optionnelle)
Pour les machines équipées d'un plateau circulaire C, vous disposez
d'une fonction qui vous permet de définir le mode de transformation :
U
COORD ROT définit que la fonction PLANE ne doit faire
pivoter le système de coordonnées qu'à l'angle
d'inclinaison défini. Le plateau circulaire ne bouge
pas, la compensation de la rotation s'effectue par
calcul
U
TABLE ROT définit que la fonction PLANE doit
positionner le plateau circulaire à l'angle d'inclinaison
défini. La compensation s'effectue par rotation de la
pièce
Avec l'utilisation de la fonction PLANE AXIAL, les fonctions
COORD ROT et TABLE ROT ne servent pas.
Quand vous utilisez la fonction TABLE ROT avec une
rotation de base et un angle d'inclinaison à 0, la TNC
incline la table à l'angle défini dans la rotation de base.
HEIDENHAIN TNC 320
363
11.3 Fonctions auxiliaires pour les axes rotatifs
11.3 Fonctions auxiliaires pour les
axes rotatifs
Avance en mm/min. sur les axes rotatifs A, B, C:
M116 (option de logiciel 1)
Comportement standard
Pour un axe rotatif, la TNC interprète l'avance programmée en
degrés/min. (dans les programmes en mm et aussi les programmes
en pouces). L’avance de contournage dépend donc de l’écart entre le
centre de l’outil et le centre des axes rotatifs.
Plus la distance sera grande et plus l’avance de contournage sera
importante.
Avance en mm/min. pour les axes rotatifs avec M116
La géométrie de la machine doit être définie par le
constructeur dans la description de la cinématique.
M116 n'agit que sur les plateaux ou tables circulaires.
M116 ne peut pas être utilisée avec les têtes pivotantes.
Si votre machine est équipée d'une combinaison
table/tête, la TNC ignore les axes rotatifs de la tête
pivotante.
M116 agit également lorsque le plan d'usinage incliné est
activé.
Pour un axe rotatif, la TNC interprète l'avance programmée en
mm/min. (ou 1/10 pouces/min.). La TNC calcule en début de séquence
l'avance pour cette séquence. L'avance d'un axe rotatif ne varie pas
pendant l'exécution de cette séquence, même si l'outil se déplace
autour du centre des axes rotatifs.
Effet
M116 agit dans le plan d'usinage. Pour annuler M116, programmez
M117. En fin de programme, M116 est également désactivée.
M116 devient active en début de séquence.
364
Programmation : usinage multiaxes
11.3 Fonctions auxiliaires pour les axes rotatifs
Déplacement des axes rotatifs avec optimisation
de la course : M126
Comportement standard
Le comportement standard de la TNC lors de positionnement d'axes
rotatifs, dont l'affichage est réduit à des valeurs inférieures à 360°,
dépend du paramètre shortestDistance (300401). Là est défini si,
pour aller à la position programmée, la TNC doit tenir compte de la
différence position nominale-position réelle ou si elle doit toujours
(également sans M126) prendre le chemin le plus court. Exemples :
Position effective
Position nominale
Course
350°
10°
–340°
10°
340°
+330°
Comportement avec M126
Avec M126, la TNC déplace selon le chemin le plus court un axe rotatif
dont l'affichage est réduit à une valeur inférieure à 360°. Exemples :
Position effective
Position nominale
Course
350°
10°
+20°
10°
340°
–30°
Effet
M126 est active en début de séquence.
Pour annuler M126, introduisez M127, M126 est également
désactivée en fin de programme.
HEIDENHAIN TNC 320
365
11.3 Fonctions auxiliaires pour les axes rotatifs
Réduire l'affichage de l'axe rotatif à une valeur
inférieure à 360° : M94
Comportement standard
La TNC déplace l’outil de la valeur angulaire actuelle à la valeur
angulaire programmée.
Exemple :
Valeur angulaire actuelle :
Valeur angulaire programmée :
Course réelle :
538°
180°
-358°
Comportement avec M94
En début de séquence, la TNC réduit la valeur angulaire actuelle à une
valeur inférieure à 360°, puis se déplace à la valeur angulaire
programmée. Si plusieurs axes rotatifs sont actifs, M94 réduit
l'affichage de tous les axes rotatifs. En alternative, vous pouvez
introduire un axe rotatif derrière M94. La TNC ne réduit alors que
l'affichage de cet axe.
Exemple de séquences CN
Réduire les valeurs d’affichage de tous les axes rotatifs actifs :
L M94
Ne réduire que la valeur d’affichage de l’axe C :
L M94 C
Réduire l’affichage de tous les axes rotatifs actifs, puis se déplacer
avec l’axe C à la valeur programmée :
L C+180 FMAX M94
Effet
M94 n’agit que dans la séquence de programme dans laquelle elle a
été programmée.
M94 est active en début de séquence.
366
Programmation : usinage multiaxes
11.3 Fonctions auxiliaires pour les axes rotatifs
Sélection d'axes inclinés: M138
Comportement standard
Avec les fonctions M128, TCPM ainsi qu'avec l'inclinaison du plan
d'usinage, la TNC tient compte des axes rotatifs définis dans les
paramètres-machine par le constructeur de votre machine.
Comportement avec M138
Avec les fonctions indiquées ci-dessus, la TNC ne tient compte que
des axes inclinés ayant été définis avec M138.
Effet
M138 est active en début de séquence.
Pour annuler M138, reprogrammez M138 sans indiquer les axes
inclinés.
Exemple de séquences CN
Pour les fonctions indiquées ci-dessus, ne tenir compte que de l'axe
incliné C:
L Z+100 R0 FMAX M138 C
HEIDENHAIN TNC 320
367
11.3 Fonctions auxiliaires pour les axes rotatifs
Validation de la cinématique de la machine pour
les positions EFF/NOM en fin de séquence: M144
(option de logiciel 2)
Comportement standard
La TNC déplace l'outil jusqu'aux positions définies dans le programme
d'usinage. Dans le programme, si la position d'un axe incliné est
modifiée, le décalage qui en résulte sur les axes linéaires doit être
calculé et le déplacement doit être réalisé dans une séquence de
positionnement.
Comportement avec M144
La TNC tient compte d'une modification de la cinématique de la
machine dans l'affichage de position, par exemple lorsqu'elle provient
du changement d'une broche additionnelle. Si la position d'un axe
incliné commandé est modifiée, la position de la pointe de l'outil est
alors modifiée par rapport à la pièce pendant la procédure
d'inclinaison. Le décalage qui en résulte est compensé dans
l'affichage de position.
Les positionnements avec M91/M92 sont autorisés si
M144 est active.
L'affichage de positions en modes de fonctionnement EN
CONTINU et PAS A PAS ne se modifie que lorsque les
axes inclinés ont atteint leur position finale.
Effet
M144 devient active en début de séquence. M144 n'est pas active en
liaison avec M128 ou avec l'inclinaison du plan d'usinage.
Pour annuler M144, programmez M145.
La géométrie de la machine doit être définie par le
constructeur dans la description de la cinématique.
Le constructeur de la machine en définit l'effet dans les
modes de fonctionnement automatique et manuel.
Consultez le manuel de votre machine.
368
Programmation : usinage multiaxes
Mode manuel et
dégauchissage
12.1 Mise sous tension, Mise hors tension
12.1 Mise sous tension, Mise hors
tension
Mise sous tension
La mise sous tension et le franchissement des points de
référence sont des fonctions qui dépendent de la
machine. Consultez le manuel de votre machine.
Mettre sous tension l'alimentation de la TNC et de la machine. La TNC
affiche alors le dialogue suivant :
DÉMARRAGE DU SYSTÈME
La TNC démarre
COUPURE D'ALIMENTATION
Message de la TNC indiquant une coupure
d'alimentation – Effacer le message
COMPILER LE PROGRAMME AUTOMATE PLC
Compilation automatique du programme PLC de la TNC
MANQUE TENSION COMMANDE RELAIS
Mettre la commande sous tension. La TNC vérifie la
fonction Arrêt d'urgence
MODE MANUEL
FRANCHIR POINTS DE RÉFÉRENCE
Franchir les points de référence dans l'ordre
chronologique défini : pour chaque axe, appuyer sur la
touche externe START ou
franchir les points de référence dans n'importe quel
ordre : pour chaque axe, appuyer sur la touche de
sens externe et la maintenir enfoncée jusqu'à ce que
le point de référence soit franchi
370
Mode manuel et dégauchissage
12.1 Mise sous tension, Mise hors tension
Si votre machine est équipée de systèmes de mesure
absolue, le franchissement des marques de référence
n'est pas nécessaire. La TNC est opérationnelle
immédiatement après sa mise sous-tension.
La TNC est maintenant opérationnelle et se trouve en mode Manuel
Vous ne devez franchir les points de référence que si vous
désirez déplacer les axes de la machine. Si vous voulez
seulement éditer ou tester des programmes, dès la mise
sous tension de la commande, sélectionnez le mode
Mémorisation/édition de programme ou Test de
programme.
Vous pouvez alors franchir les points de référence
ultérieurement. Pour cela, en mode Manuel, appuyez sur
la softkey FRANCHIR PT DE REF
HEIDENHAIN TNC 320
371
12.1 Mise sous tension, Mise hors tension
Franchissement du point de référence avec inclinaison du plan
d'usinage
Attention, risque de collision!
Veillez à ce que les valeurs angulaires inscrites dans le
menu correspondent bien aux angles réels de l'axe
incliné.
Désactivez la fonction „Inclinaison du plan d'usinage“
avant de franchir les points de référence. Veiller à éviter
toute collision. Si nécessaire, dégagez l'outil auparavant.
La TNC active automatiquement le plan d'usinage incliné si cette
fonction était active au moment de la mise hors tension de la
commande. La TNC déplace alors les axes dans le système de
coordonnées incliné lorsque vous appuyez sur une touche de sens
d'axe. Positionnez l'outil de manière à éviter toute collision lors d'un
franchissement ultérieur des points de référence. Pour franchir les
points de référence, vous devez désactiver la fonction „Inclinaison du
plan d'usinage“, voir „Activation manuelle de l'inclinaison”, page 404.
Si vous utilisez cette fonction avec des systèmes de
mesure non absolue, vous devez confirmer les positions
des axes rotatifs qui apparaissent dans une fenêtre
auxiliaire dans l'écran. Les positions affichées
correspondent aux dernières positions actives des axes
rotatifs avant la mise hors tension.
Si l'une des deux fonctions précédemment actives est actuellement
activée, la touche START CN est sans fonction. La TNC délivre le
message d'erreur correspondant.
Mise hors tension
Pour éviter de perdre des données lors de la mise hors tension, vous
devez arrêter le système d'exploitation de la TNC de la manière
suivante :
U
Sélectionner le mode Manuel
U Sélectionner la fonction d'arrêt du système, appuyer
une nouvelle fois sur la softkey OUI
U
Quand la TNC affiche dans une fenêtre auxiliaire le
texte VOUS POUVEZ MAINTENANT METTRE HORS TENSION,
vous pouvez alors couper la tension d’alimentation de
la TNC
Une mise hors tension arbitraire de la TNC peut provoquer
la perte des données!
Vous devez savoir que le fait d'actionner la touche END
après la mise à l'arrêt de la commande provoque un
redémarrage de celle-ci. La mise hors tension pendant le
redémarrage peut également entraîner la perte de
données!
372
Mode manuel et dégauchissage
12.2 Déplacement des axes de la machine
12.2 Déplacement des axes de la
machine
Remarque
Le déplacement avec touches de sens externes est une
fonction-machine. Consultez le manuel de la machine!
Déplacer l'axe avec les touches de sens externes
Sélectionner le mode Manuel
Pressez la touche de sens externe, maintenez-la
enfoncée pendant tout le déplacement de l'axe ou
Déplacez l'axe en continu : maintenir enfoncée la
touche de sens externe et appuyez brièvement sur la
touche START externe
Stopper : appuyer sur la touche STOP externe
Les deux méthodes peuvent vous permettre de déplacer plusieurs
axes simultanément. Vous modifiez l'avance de déplacement des
axes avec la softkey F, voir „Vitesse de rotation broche S, avance F,
fonction auxiliaire M”, page 376.
HEIDENHAIN TNC 320
373
12.2 Déplacement des axes de la machine
Positionnement pas à pas
Lors du positionnement pas à pas, la TNC déplace un axe de la
machine de la valeur d'un incrément que vous avez défini.
Z
Sélectionner mode Manuel ou Manivelle électronique
Commuter la barre de softkeys
8
8
Sélectionner le positionnement pas à pas : mettre la
softkey INCREMENTAL sur ON
PASSE RÉPÉTITIVE =
8
16
X
Introduire la passe en mm, valider avec la touche ENT
Appuyer sur la touche de sens externe : répéter à
volonté le positionnement
La valeur max. que l'on peut introduire pour une passe est
de 10 mm.
374
Mode manuel et dégauchissage
12.2 Déplacement des axes de la machine
Déplacement avec la manivelle électronique
HR 410
La manivelle portable HR 410 est équipée de deux touches de
validation. Elles sont situées en dessous du volant.
Vous ne pouvez déplacer les axes de la machine que si une touche de
validation est appuyée (fonction dépendant de la machine).
1
2
La manivelle HR 410 dispose des éléments de commande suivants :
1
2
3
4
5
6
Touche d'ARRET D'URGENCE
Volant de la manivelle
Touches de validation
Touches de sélection des axes
Touche de transfert de la position effective
Touches de sélection de l'avance (lente, moyenne, rapide ; les
avances sont définies par le constructeur de la machine)
7 Direction suivant laquelle la TNC déplace l'axe sélectionné
8 Fonctions-machine (définies par le constructeur de la machine)
3
4
6
8
4
5
7
Les affichages en rouge indiquent l'axe et l'avance sélectionnés.
Si la fonction M118 est activée, le déplacement avec la manivelle est
également possible pendant l'exécution du programme.
Déplacement
Sélectionner le mode Manivelle électronique
Maintenir enfoncée la touche de validation
Sélectionner l'axe
Sélectionner l'avance
Déplacer l'axe actif dans le sens + ou
Déplacer l'axe actif dans le sens –
HEIDENHAIN TNC 320
375
12.3 Vitesse de rotation broche S, avance F, fonction auxiliaire M
12.3 Vitesse de rotation broche S,
avance F, fonction auxiliaire M
Application
En modes de fonctionnement Manuel et Manivelle électronique,
introduisez la vitesse de rotation broche S, l'avance F et la fonction
auxiliaire M avec les softkeys. Les fonctions auxiliaires sont
expliquées au chapitre „7. Programmation : fonctions auxiliaires“.
Le constructeur de la machine définit les fonctions
auxiliaires M à utiliser ainsi que leur fonction.
Introduction de valeurs
Vitesse de rotation broche S, fonction auxiliaire M
Introduire la vitesse de rotation broche : softkey S
VITESSE DE ROTATION BROCHE S=
1000
Introduire la vitesse de rotation broche et valider avec
la touche START externe
Lancez la rotation de la broche correspondant à la vitesse de rotation
S programmée à l'aide d'une fonction auxiliaire M. Vous introduisez
une fonction auxiliaire M de la même manière.
Avance F
Pour valider l'introduction d'une avance F, vous devez appuyer sur la
touche ENT au lieu de la touche START externe.
Règles concernant l'avance F:
„ Quand F=0 est introduit, c'est la plus petite avance des paramètres
machine manualFeed qui est valide
„ Si l'avance introduite dépasse l'avance définie dans le paramètre
machine maxFeed, c'est la valeur introduite dans le paramètremachine qui est active
„ F reste sauvegardée même après une coupure d'alimentation.
376
Mode manuel et dégauchissage
12.3 Vitesse de rotation broche S, avance F, fonction auxiliaire M
Modifier la vitesse de rotation broche et l'avance
La valeur programmée pour la vitesse de rotation broche S et l'avance
F peut être modifiée de 0% à 150% avec les potentiomètres.
Le potentiomètre de réglage de la vitesse de broche n'agit
que sur les machines équipées d'un variateur de broche.
HEIDENHAIN TNC 320
377
12.4 Initialisation du point d'origine sans palpeur 3D
12.4 Initialisation du point
d'origine sans palpeur 3D
Remarque
Initialisation du point d'origine avec palpeur 3D : (voir
„Initialisation du point d'origine avec palpeur 3D” à la
page 394).
Lors de l'initialisation du point d'origine, vous initialisez l'affichage de
la TNC aux coordonnées d'une position pièce connue.
Préparatif
U
U
U
Brider la pièce et la dégauchir
Mettre en place l'outil zéro de rayon connu
S'assurer que la TNC affiche bien les positions effectives
378
Mode manuel et dégauchissage
Y
Mesure de précaution
Si la surface de la pièce ne doit pas être effleurée, il
convient d'utiliser une cale d'épaisseur d. Introduisez
alors pour le point d'origine une valeur augmentée de d.
Z
Sélectionner le mode Manuel
Y
-R
X
-R
X
Déplacer l'outil avec précaution jusqu'à ce qu'il
touche la pièce (l'effleure)
Sélectionner l'axe
INITIALISATION POINT D'ORIGINE Z=
Outil zéro, axe de broche : initialiser l'affichage à une
position pièce connue (ex.0) ou introduire l'épaisseur
d de la cale. Dans le plan d'usinage : tenir compte du
rayon d'outil
De la même manière, initialiser les points d'origine des autres axes.
Si vous utilisez un outil préréglé dans l'axe de plongée, initialisez
l'affichage de l'axe de plongée à la longueur L de l'outil ou à la somme
Z=L+d.
La TNC enregistre automatiquement sur la ligne 0 du
tableau Preset le point de référence initialisé avec les
touches des axes.
HEIDENHAIN TNC 320
379
12.4 Initialisation du point d'origine sans palpeur 3D
Initialiser le point d'origine avec les touches
d'axes
12.4 Initialisation du point d'origine sans palpeur 3D
Gestion des points d'origine avec le tableau
Preset
Vous devriez impérativement utiliser le tableau Preset
dans les cas suivants :
„ Votre machine est équipée d'axes rotatifs (table
pivotante ou tête pivotante) et vous travaillez avec la
fonction d'inclinaison du plan d'usinage
„ Votre machine est équipée d'un système de
changement de tête
„ Vous avez jusqu'à présent travaillé sur des TNC plus
anciennes en utilisant des tableaux de points zéro en
coordonnées REF
„ Vous désirez usiner plusieurs pièces identiques dont les
positions de bridage présentent différents alignements
Le tableau Preset peut contenir n'importe quel nombre de
lignes (points d'origine). Afin d'optimiser la taille du fichier
et la vitesse de traitement, veillez à ne pas utiliser plus de
lignes que nécessaire pour gérer vos points d'origine.
Par sécurité, vous ne pouvez insérer de nouvelles lignes
qu'à la fin du tableau Preset.
Enregistrer les points d'origine dans le tableau Preset
Le tableau Preset s'appelle PRESET.PR et mémorisé dans le répertoire
TNC:\table\. Le fichier PRESET.PR n'est éditable en mode Manuel et
Manivelle électronique que si la softkey EDITER PRESET a été
actionnée.
La copie du tableau Preset dans un autre répertoire (pour la
sauvegarde des données) est autorisée. Les lignes que le
constructeur de votre machine a protégées à l'écriture restent
systématiquement protégées à l'écriture dans la copie du tableau; par
conséquent, vous ne pouvez pas les modifier.
Dans la copie du tableau, ne modifiez jamais le nombre de lignes! Cela
pourrait entraîner des problèmes lorsque vous souhaitez réactiver le
tableau.
Pour activer un tableau Preset situé dans un autre répertoire, vous
devez le recopiez à nouveau dans le répertoire TNC:\table\.
380
Mode manuel et dégauchissage
12.4 Initialisation du point d'origine sans palpeur 3D
Plusieurs possibilités s'offrent à vous pour enregistrer des points
d'origine/rotations de base dans le tableau Preset :
„ au moyen des cycles palpeurs en modes de fonctionnement Manuel
ou Manivelle électronique (voir chapitre 14)
„ au moyen des cycles palpeurs 400 à 402 et 410 à 419 en mode
Automatique (voir Manuel d'utilisation des cycles, chapitres 14 et
15)
„ par une introduction manuelle (voir description ci-après)
Les rotations de base du tableau Preset font tourner le
système de coordonnées de la valeur du Preset située sur
la même ligne que celle de la rotation de base.
Assurez vous lors de l'initialisation du point d'origine, que
les positions des axes rotatifs correspondent aux valeurs
du menu 3D ROT. De ce fait :
„ Lorsque la fonction Inclinaison du plan d'usinage est
inactive, l'affichage de positions des axes rotatifs doit
être = 0° (si nécessaire, remettre à zéro les axes
rotatifs)
„ Lorsque la fonction Inclinaison du plan d'usinage est
active, l'affichage de positions des axes rotatifs et les
angles introduits dans le menu 3D ROT doivent
coïncider
La ligne 0 du tableau Preset est systématiquement
protégée à l'écriture. La TNC mémorise toujours sur la
ligne 0 le dernier point d'origine initialisé manuellement à
l'aide des touches des axes ou par softkey. Si le point
d'origine initialisé manuellement est actif, la TNC inscrit le
texte le texte PR MAN(0) dans l'affichage d'état
HEIDENHAIN TNC 320
381
12.4 Initialisation du point d'origine sans palpeur 3D
Enregistrer manuellement les points d'origine dans le tableau
Preset
Pour enregistrer les points d'origine dans le tableau Preset, procédez
de la manière suivante :
Sélectionner le mode Manuel
Déplacer l'outil avec précaution jusqu'à ce qu'il
touche la pièce (l'effleure), ou bien positionner en
conséquence le comparateur
Afficher le tableau Preset : la TNC ouvre le tableau
Preset et positionne le curseur sur la ligne active du
tableau
Sélectionner les fonctions pour l'introduction Preset :
la TNC affiche dans la barre de softkeys les
différentes possibilités. Description des différentes
possibilités : voir tableau suivant
Dans le tableau Preset, sélectionnez la ligne que vous
voulez modifier (le numéro de ligne correspond au
numéro Preset)
Si nécessaire, sélectionner dans le tableau Preset la
colonne (l'axe) que vous voulez modifier
A l'aide de la softkey, sélectionner l'un des choix
disponibles (voir le tableau suivant)
382
Mode manuel et dégauchissage
12.4 Initialisation du point d'origine sans palpeur 3D
Fonction
Softkey
Valider directement la position effective de l’outil
(du comparateur) comme nouveau point
d'origine : la fonction ne mémorise le point
d'origine que sur l'axe sur lequel se trouve
actuellement la surbrillance
Affecter une valeur au choix à la position
effective de l'outil (du comparateur) : la fonction
ne mémorise le point d'origine que sur l'axe
actuellement en surbrillance. Introduire la valeur
souhaitée dans la fenêtre auxiliaire
Décaler en incrémental un point d'origine déjà
enregistré dans le tableau : la fonction ne
mémorise le point d'origine que sur l'axe
actuellement la surbrillance. Introduire dans la
fenêtre auxiliaire la valeur de correction
souhaitée en tenant compte du signe. Avec
l'affichage en pouces actif : introduire une valeur
en pouces; en interne, la TNC convertit la valeur
en mm
Introduire directement un nouveau point
d'origine (spécifique à un axe) sans prendre en
compte la cinématique. N'utiliser cette fonction
que si votre machine est équipée d'un plateau
circulaire et si vous désirez initialiser le point
d'origine au centre du plateau circulaire en
introduisant directement la valeur 0. La fonction
ne mémorise la valeur que sur l'axe actuellement
la surbrillance. Introduire la valeur souhaitée dans
la fenêtre auxiliaire Avec l'affichage en pouces
actif : introduire une valeur en pouces; en interne,
la TNC convertit la valeur en mm
Sélectionner TRANSFORM. DE BASE/OFFSET.
Avec la projection TRANSFORM. DE BASE, la
commande affiche les colonnes X, Y et Z. Selon
la machine, la commande affiche également les
colonnes SPA, SPB et SPC. La TNC enregistre ici
la rotation de base (avec l'axe d'outil Z, elle utilise
la colonne SPC). Dans la vue OFFSET, la
commande affiche les valeurs de décalage du
Preset.
Inscrire le point d'origine actuellement actif sur
une ligne libre du tableau : la fonction mémorise
le point d'origine sur tous les axes et active
automatiquement la ligne du tableau concernée.
Avec l'affichage en pouces actif : introduire une
valeur en pouces; en interne, la TNC convertit la
valeur en mm
HEIDENHAIN TNC 320
383
12.4 Initialisation du point d'origine sans palpeur 3D
Editer un tableau Preset
Fonction d'édition en mode tableau
Softkey
Sélectionner le début du tableau
Sélectionner la fin du tableau
Sélectionner la page précédente du tableau
Sélectionner la page suivante du tableau
Sélectionner les fonctions pour l'introduction
Preset
Afficher la sélection de la transformation de
base/du décalage d'axe
Activer le point d'origine de la ligne actuellement
sélectionnée du tableau Preset
Ajouter un nombre possible de lignes à la fin du
tableau (2ème barre de softkeys)
Copier le champ en surbrillance (2ème barre de
softkeys)
Insérer le champ copié (2ème barre de softkeys)
Annuler la ligne actuellement sélectionnée : la
TNC inscrit un (2ème barre de softkeys) dans
toutes les colonnes
Ajouter une seule ligne à la fin du tableau (2ème
menu de softkeys)
Effacer une seule ligne à la fin du tableau (2ème
menu de softkeys)
384
Mode manuel et dégauchissage
12.4 Initialisation du point d'origine sans palpeur 3D
Activer le point d'origine du tableau Preset en mode Manuel
Lorsque l'on active un point d'origine à partir du tableau
Preset, la TNC annule un décalage de point zéro actif, une
image miroir, une rotation ou un facteur échelle.
Par contre, une conversion de coordonnées que vous
avez programmée avec le cycle 19 Inclinaison du plan
d’usinage ou avec la fonction PLANE reste active.
Sélectionner le mode Manuel
Afficher le tableau Preset
Choisir le numéro de point d'origine que vous
souhaitez activer ou
choisir avec la touche GOTO le numéro du point
d'origine, puis valider avec la touche ENT
Activer le point d'origine
Valider l'activation du point d'origine. La TNC affiche
la valeur et – si celle-ci est définie – la rotation de base
Quitter le tableau Preset
Activer dans un programme un point d'origine issu du tableau
Preset
Pour activer des points d'origine contenus dans le tableau Preset en
cours de déroulement du programme, utilisez le cycle 247. Dans le
cycle 247, il suffit de définir le numéro du point d'origine que vous
souhaitez activer (voir manuel d'utilisation des cycles, cycle 247
INITIALISATION DU POINT DE REFERENCE).
HEIDENHAIN TNC 320
385
12.5 Utilisation d'un palpeur 3D
12.5 Utilisation d'un palpeur 3D
Vue d'ensemble
En mode de fonctionnement Manuel, vous disposez des cycles
palpeurs suivants :
HEIDENHAIN ne garantit les fonctions des cycles de
palpage que si les palpeurs HEIDENHAIN sont utilisés.
Dans le cas ou vous utilisez les fonctions de palpage dans
un plan incliné, vous devez initialiser 3D-ROT sur Actif
dans les modes manuel et automatique.
Fonction
Softkey
Page
Etalonnage de la longueur effective
Page 389
Etalonnage du rayon effectif
Page 390
Détermination de la rotation de base à
partir d'une droite
Page 393
Initialisation du point d'origine sur un
axe au choix
Page 394
Initialisation d'un coin comme point
d'origine
Page 395
Initialisation du centre de cercle
comme point d'origine
Page 396
Gestion des données du palpeur
Voir
Manuel
d'utilisation
des cycles
Des informations supplémentaires sur le tableau des
palpeurs sont disponibles dans le manuel utilisateur de la
programmation des cycles
Sélectionner le cycle palpeur
U
Sélectionner le mode Manuel ou Manivelle électronique
U Sélectionner les fonctions de palpage : appuyer sur la
softkey FONCTIONS PALPAGE. La TNC affiche
d’autres softkeys : voir tableau ci-dessus
U
386
Sélectionner le cycle palpeur : p. ex. appuyer sur la
softkey PALPAGE ROT ; la TNC affiche à l'écran le
menu correspondant
Mode manuel et dégauchissage
12.5 Utilisation d'un palpeur 3D
Enregistrer les valeurs de mesure issues des
cycles palpeurs dans un tableau de points zéro
Utilisez cette fonction si vous souhaitez enregistrer des
valeurs de mesure dans le système de coordonnées
pièce. Si vous voulez enregistrer les valeurs de mesure
dans le système de coordonnées machine (coordonnées
REF) utilisez la softkey ENTREE DS TABLEAU PRESET
(voir „Enregistrer les valeurs de mesure issues des cycles
palpeurs dans le tableau Preset” à la page 387).
Avec la softkey ENTREE DANS TAB. POINTS, la TNC peut enregistrer
les valeurs de mesure dans un tableau de points zéro après l'exécution
de n'importe quel cycle palpeur :
U
U
U
U
Exécuter une fonction de palpage au choix
Enregistrer les coordonnées souhaitées du point d'origine dans les
champs de saisie proposés à cet effet (en fonction du cycle palpeur
à exécuter)
Introduire le numéro du point zéro dans le champ de saisie Numéro
dans tableau =
Appuyer sur la softkey ENTREE DANS TAB. POINTS; la TNC
enregistre le point zéro sous le numéro introduit dans le tableau
indiqué
Enregistrer les valeurs de mesure issues des
cycles palpeurs dans le tableau Preset
Utilisez cette fonction si vous désirez enregistrer des
valeurs de mesure dans le système de coordonnées
machine (coordonnées REF). Si vous voulez enregistrer
les valeurs de mesure dans le système de coordonnées
pièce (coordonnées REF), utilisez la softkey ENTREE
DANS TAB. POINTS (voir „Enregistrer les valeurs de
mesure issues des cycles palpeurs dans un tableau de
points zéro” à la page 387).
Avec la softkey ENTREE DS TABLEAU PRESET, la TNC peut
enregistrer les valeurs de mesure dans le tableau Preset après
l'exécution de n'importe quel cycle palpeur. Les valeurs de mesure
enregistrées se réfèrent alors au système de coordonnées machine
(coordonnées REF). Le tableau Preset s'appelle PRESET.PR et est
mémorisé dans le répertoire TNC:\table\.
U
U
U
U
Exécuter une fonction de palpage au choix
Enregistrer les coordonnées souhaitées du point d'origine dans les
champs de saisie proposés à cet effet (en fonction du cycle palpeur
à exécuter)
Introduire le numéro de preset dans le champ de saisie Numéro dans
tableau :
Appuyer sur la softkey ENTREE DS TABLEAU PRESET : La TNC
enregistre le point zéro sous le numéro introduit dans le tableau
Preset
HEIDENHAIN TNC 320
387
12.6 Etalonner le palpeur 3D
12.6 Etalonner le palpeur 3D
Introduction
Pour déterminer exactement le point de commutation réel d'un
palpeur 3D, vous devez étalonner le palpeur. Dans le cas contraire, la
TNC n'est pas en mesure de fournir des résultats de mesure précis.
Vous devez toujours étalonner le palpeur lors :
„ de la mise en service
„ d'une rupture de la tige de palpage
„ du changement de la tige de palpage
„ d'une modification de l'avance de palpage
„ d'instabilités dues, par exemple, à un échauffement de
la machine
„ d'une modification de l'axe d'outil actif
Lors de l'étalonnage, la TNC calcule la longueur „effective“ de la tige
de palpage ainsi que le rayon „effectif“ de la bille de palpage. Pour
étalonner le palpeur 3D, fixez sur la table de la machine une bague de
réglage de hauteur et de diamètre intérieur connus.
388
Mode manuel et dégauchissage
12.6 Etalonner le palpeur 3D
Etalonnage de la longueur effective
HEIDENHAIN ne garantit les fonctions des cycles de
palpage que si les palpeurs HEIDENHAIN sont utilisés.
Dans le cas ou vous utilisez les fonctions de palpage dans
un plan incliné, vous devez initialiser 3D-ROT sur Actif
dans les modes manuel et automatique.
La longueur effective du palpeur se réfère toujours au
point d'origine de l'outil. En règle générale, le constructeur
de la machine initialise le point d'origine de l'outil sur le nez
de la broche.
U
Z
Y
5
X
Initialiser le point d'origine dans l'axe de broche de manière à avoir
pour la table de la machine: Z=0.
U Sélectionner la fonction d'étalonnage pour la longueur
du palpeur : appuyer sur la softkey FONCTIONS
PALPAGE et sur ETAL L. La TNC affiche une fenêtre
de menu comportant quatre champs de saisie
U
Introduire l'axe d'outil (touche d'axe)
U
Point d'origine : introduire la hauteur de la bague de
réglage
U
Rayon effectif bille et Longueur effective ne
nécessitent pas d'introduire des données
U
Déplacer le palpeur très près de la surface de la bague
de réglage
U
Si nécessaire, modifier le sens du déplacement :
appuyer sur la softkey ou sur les touches fléchées
U
Palper la surface : appuyer sur la touche START
externe
HEIDENHAIN TNC 320
389
12.6 Etalonner le palpeur 3D
Etalonner le rayon effectif et compenser le
désaxage du palpeur
HEIDENHAIN ne garantit les fonctions des cycles de
palpage que si les palpeurs HEIDENHAIN sont utilisés.
Dans le cas ou vous utilisez les fonctions de palpage dans
un plan incliné, vous devez initialiser 3D-ROT sur Actif
dans les modes manuel et automatique.
Normalement, l'axe du palpeur n'est pas aligné exactement sur l'axe
de broche. La fonction d'étalonnage détermine le décalage entre l'axe
du palpeur et l'axe de broche et effectue la compensation.
La procédure d'étalonnage varie en fonction des indications présentes
dans la colonne TRACK du tableau des systèmes de palpage. Si
l'orientation de la broche est active, le processus d'étalonnage a lieu
avec un seul start CN. Mais si l'orientation de la broche est inactive,
vous avez le choix d'étalonner ou non le désaxage.
Z
Y
X
10
Lors de l'étalonnage du désaxage, la TNC fait tourner le palpeur 3D de
180°. La rotation est déclenchée par une fonction auxiliaire définie par
le constructeur de la machine dans le paramètre-machine
mStrobeUTurn.
Pour l'étalonnage manuel, procédez de la manière suivante :
U
Positionner la bille de palpage en mode Manuel, dans l'alésage de la
bague de réglage
U Sélectionner la fonction d'étalonnage du rayon de la
bille de palpage et du désaxage du palpeur : appuyer
sur la softkey ETAL R
U
Sélectionner l'axe d'outil. Introduire le rayon de la
bague de réglage
U
Palpage : appuyer 4 fois sur la touche START externe.
Le palpeur 3D palpe dans chaque direction une
position de l'alésage et calcule le rayon effectif de la
bille
U
Si vous désirez maintenant quitter la fonction
d'étalonnage, appuyez sur la softkey FIN
La machine doit avoir été préparée par le constructeur
pour pouvoir déterminer le désaxage de la bille de palpage.
Consultez le manuel de la machine!
390
U
Calculer le désaxage de la bille : appuyer sur la softkey
180°. La TNC fait tourner le palpeur de 180°
U
Palpage : appuyer 4 x sur la touche START externe. Le
palpeur 3D palpe dans chaque direction une position
de l'alésage et calcule le désaxage du palpeur.
Mode manuel et dégauchissage
12.6 Etalonner le palpeur 3D
Afficher la valeur d'étalonnage
La TNC mémorise la longueur effective et le rayon effectif du palpeur
dans le tableau d'outils. La TNC mémorise le désaxage du palpeur
dans le tableau des palpeurs dans la colonne CAL_OF1 (axe principal) et
CAL_OF2 (axe secondaire) Pour afficher les valeurs mémorisées,
appuyez sur la softkey du tableau palpeurs.
Assurez vous que le bon numéro d'outil soit actif lorsque
vous utilisez le palpeur et ce, indépendamment du fait
d'utiliser un cycle palpeur en mode Automatique ou en
mode Manuel.
Les valeurs d'étalonnage déterminées sont prises en
compte seulement après un (éventuellement nouvel)
appel d'outil.
Des informations supplémentaires sur le tableau des
palpeurs sont disponibles dans le manuel utilisateur de la
programmation des cycles
HEIDENHAIN TNC 320
391
12.7 Compensation du désaxage de la pièce avec un palpeur 3D
12.7 Compensation du désaxage de
la pièce avec un palpeur 3D
Introduction
HEIDENHAIN ne garantit les fonctions des cycles de
palpage que si les palpeurs HEIDENHAIN sont utilisés.
Dans le cas ou vous utilisez les fonctions de palpage dans
un plan incliné, vous devez initialiser 3D-ROT sur Actif
dans les modes manuel et automatique.
Y
Y
La TNC peut compenser un désalignement de la pièce au moyen
d'une „rotation de base“.
Pour cela, la TNC initialise l'angle de rotation avec la valeur d'un angle
que forme une face de la pièce avec l'axe de référence angulaire du
plan. Voir figure de droite.
La TNC mémorise la rotation de base en fonction de l'axe d'outil dans
les colonnes SPA, SPB ou SPC du tableau Preset.
PA
X
A
B
X
Pour mesurer le désalignement de la pièce, sélectionner le
sens de palpage de manière à ce qu'il soit toujours
perpendiculaire à l'axe de référence angulaire.
Pour que la rotation de base soit correctement calculée
lors de l'exécution du programme, vous devez
programmer les deux coordonnées du plan d'usinage dans
la première séquence du déplacement.
Vous pouvez aussi utiliser une rotation de base en
combinaison avec la fonction PLANE. Dans ce cas, activez
tout d'abord la rotation de base, puis la fonction PLANE.
392
Mode manuel et dégauchissage
12.7 Compensation du désaxage de la pièce avec un palpeur 3D
Déterminer la rotation de base
U
Sélectionner la fonction de palpage : appuyer sur la
softkey PALPAGE ROT
U
Positionner le palpeur à proximité du premier point de
palpage
U
Sélectionner le sens de palpage pour qu'il soit
perpendiculaire à l'axe de référence angulaire :
sélectionner l'axe et le sens avec la softkey
U
Palpage : appuyer sur la touche START externe
U
Positionner le palpeur à proximité du deuxième point
de palpage
U
Palpage : appuyer sur la touche START externe. La
TNC calcule la rotation de base et affiche l'angle dans
Angle de rotation =
U
Activer la rotation de base : appuyer sur la softkey
INITIAL. ROTATION DE BASE
U
Quitter la fonction de palpage : appuyer sur la touche
FIN
Mémoriser la rotation de base dans le tableau
Preset
U
U
Après l'opération de palpage, introduire le numéro de Preset dans le
champ Numéro dans tableau : dans lequel la TNC doit mémoriser
la rotation active
Appuyer sur la softkey ENTRÉE DS TABLEAU PRESET pour
mémoriser la rotation de base dans le tableau Preset
Afficher la rotation de base
Lorsque vous sélectionnez à nouveau PALPAGE ROT, l'angle de la
rotation de base apparaît dans l'affichage de l'angle de rotation. La
TNC affiche également l'angle de rotation dans l'affichage d'état
supplémentaire (INFOS POS.)
L’affichage d’état fait apparaître un symbole pour la rotation de base
lorsque la TNC déplace les axes de la machine conformément à la
rotation de base.
Annuler la rotation de base
U
U
U
Sélectionner la fonction de palpage : appuyer sur la softkey
PALPAGE ROT
Introduire l'angle de rotation „0“; valider avec la softkey INIT
ROTATION DE BASE
Quitter la fonction de palpage : appuyer sur la touche END
HEIDENHAIN TNC 320
393
12.8 Initialisation du point d'origine avec palpeur 3D
12.8 Initialisation du point d'origine
avec palpeur 3D
Tableau récapitulatif
Avec les softkeys suivantes, vous sélectionnez les fonctions
destinées à initialiser le point d'origine de la pièce dégauchie :
Softkey
Fonction
Page
Initialiser le point d'origine sur un axe
donné avec
Page 394
Initialisation d'un coin comme point
d'origine
Page 395
Initialisation du centre de cercle
comme point d'origine
Page 396
Initialiser le point d'origine sur un axe au choix
U
Sélectionner la fonction de palpage : appuyer sur la
softkey PALPAGE POS
U
Positionner le palpeur à proximité du point de palpage
U
Sélectionner en même temps la direction de palpage
et l'axe dont le point d'origine doit être initialisé, p. ex.
palpage de Z dans le sens Z– : sélectionner par
softkey
U
Palpage : appuyer sur la touche START externe
U
Point d'origine : introduire la coordonnée nominale,
valider avec la softkey INITIAL. POINT DE
RÉFÉRENCE, voir „Enregistrer les valeurs de mesure
issues des cycles palpeurs dans un tableau de points
zéro”, page 387
U
Quitter la fonction de palpage : appuyer sur la softkey
FIN
Z
Y
X
HEIDENHAIN ne garantit les fonctions des cycles de
palpage que si les palpeurs HEIDENHAIN sont utilisés.
Dans le cas ou vous utilisez les fonctions de palpage dans
un plan incliné, vous devez initialiser 3D-ROT sur Actif
dans les modes manuel et automatique.
394
Mode manuel et dégauchissage
U
Sélectionner la fonction de palpage : appuyer sur la
softkey PALPAGE P
U
Positionner le palpeur à proximité du premier point de
palpage de la première arête de la pièce
U
Sélectionner le sens de palpage : choisir avec la
softkey
U
Palpage : appuyer sur la touche START externe
U
Positionner le palpeur à proximité du deuxième point
de palpage de la même arête
U
Palpage : appuyer sur la touche START externe
U
Positionner le palpeur à proximité du premier point de
palpage de la deuxième arête de la pièce
U
Sélectionner la direction de palpage : choisir avec la
softkey
U
Palpage : appuyer sur la touche START externe
U
Positionner le palpeur à proximité du deuxième point
de palpage de la même arête
U
Palpage : appuyer sur la touche START externe
U
Point d'origine: introduire dans la fenêtre du menu
les deux coordonnées du point de référence, valider
avec la softkey INITIAL. point de référencevoir
„Enregistrer les valeurs de mesure issues des cycles
palpeurs dans le tableau Preset”, page 387
U
Quitter la fonction de palpage : appuyer sur la softkey
FIN
Y
Y=?
Y
P
P
X=?
X
X
HEIDENHAIN ne garantit les fonctions des cycles de
palpage que si les palpeurs HEIDENHAIN sont utilisés.
Dans le cas ou vous utilisez les fonctions de palpage dans
un plan incliné, vous devez initialiser 3D-ROT sur Actif
dans les modes manuel et automatique.
HEIDENHAIN TNC 320
395
12.8 Initialisation du point d'origine avec palpeur 3D
Coin pris comme point d'origine
12.8 Initialisation du point d'origine avec palpeur 3D
Centre de cercle pris comme point d'origine
Vous pouvez utiliser comme points d'origine les centres de trous,
poches/îlots circulaires, cylindres pleins, tenons, îlots circulaires, etc.
Y
Cercle intérieur :
La TNC palpe automatiquement la paroi interne du cercle dans les
quatre sens des axes de coordonnées.
Y+
Pour des portions de cercle (arcs de cercle), vous pouvez sélectionner
au choix le sens du palpage.
U
X–
X+
Positionner la bille du palpeur approximativement au centre du
cercle
U Sélectionner la fonction de palpage : appuyer sur la
softkey PALPAGE CC
U
Palpage : appuyer quatre fois sur la touche START
externe. Le palpeur palpe successivement 4 points
de la paroi circulaire interne
U
Point d'origine : dans la fenêtre du menu, introduire
les deux coordonnées du centre du cercle, valider
avec la softkey INITIAL. POINT D'ORIGINE ou inscrire
les valeurs dans un tableau (voir „Enregistrer les
valeurs de mesure issues des cycles palpeurs dans
un tableau de points zéro”, page 387, ou voir
„Enregistrer les valeurs de mesure issues des cycles
palpeurs dans le tableau Preset”, page 387)
U
Y–
X
Y
Y–
X+
Quitter la fonction de palpage : appuyer sur la Softkey
FIN
Cercle extérieur :
U Positionner la bille de palpage à proximité du premier point de
palpage, à l’extérieur du cercle
U Sélectionner le sens de palpage : appuyer sur la softkey adéquate
U Palpage : appuyer sur la touche START externe
U Répéter la procédure de palpage pour les 3 autres points. voir figure
en bas et à droite
U Point d'origine : introduire les coordonnées du point d'origine,
valider avec la softkey INITIAL. POINT DE RÉFÉRENCE ou inscrire
les valeurs dans un tableau (voir „Enregistrer les valeurs de mesure
issues des cycles palpeurs dans un tableau de points zéro”, page
387 ou voir „Enregistrer les valeurs de mesure issues des cycles
palpeurs dans le tableau Preset”, page 387)
U Quitter la fonction de palpage : appuyer sur la softkey FIN
X–
Y+
X
A l'issue du palpage, la TNC affiche les coordonnées actuelles du
centre du cercle ainsi que le rayon PR.
HEIDENHAIN ne garantit les fonctions des cycles de
palpage que si les palpeurs HEIDENHAIN sont utilisés.
Dans le cas ou vous utilisez les fonctions de palpage dans
un plan incliné, vous devez initialiser 3D-ROT sur Actif
dans les modes manuel et automatique.
396
Mode manuel et dégauchissage
12.8 Initialisation du point d'origine avec palpeur 3D
Mesure de pièces avec -palpeur 3D
Vous pouvez aussi utiliser le palpeur en modes Manuel et Manivelle
électronique pour exécuter des mesures simples sur la pièce. Pour
réaliser des opérations de mesure complexes, on dispose de
nombreux cycles de palpage programmables (voir manuel d'utilisation
des cycles, chapitre 16, Contrôle automatique des pièces). Le palpeur
3D vous permet de déterminer :
„ les coordonnées d’une position et, à partir de là,
„ les dimensions et angles sur la pièce
Définir les coordonnées d’une position sur une pièce dégauchie
U Sélectionner la fonction de palpage : appuyer sur la
softkey PALPAGE POS
U
Positionner le palpeur à proximité du point à palper
U
Sélectionner la direction du palpage et en même
temps l’axe auquel doit se référer la coordonnée :
sélectionner la softkey correspondante
U
Démarrer la procédure de palpage : appuyer sur la
touche START externe
La TNC affiche comme point d'origine les coordonnées du point de
palpage.
Définir les coordonnées d’un coin dans le plan d’usinage
Déterminer les coordonnées du coin : voir „Coin pris comme point
d'origine”, page 395. La TNC affiche comme point d'origine les
coordonnées du coin palpé.
HEIDENHAIN TNC 320
397
12.8 Initialisation du point d'origine avec palpeur 3D
Déterminer les dimensions d’une pièce
U Sélectionner la fonction de palpage : appuyer sur la
softkey PALPAGE POS
U
Positionner le palpeur à proximité du premier point de
palpage A
U
Sélectionner le sens de palpage par softkey
U
Palpage : appuyer sur la touche START externe
U
Noter la valeur affichée comme point d'origine
(seulement si le point d'origine initialisé
précédemment reste actif)
U
Point d'origine : introduire „0“
U
Quitter le dialogue : appuyer sur la touche END
U
Sélectionner à nouveau la fonction de palpage :
appuyer sur la softkey PALPAGE POS
U
Positionner le palpeur à proximité du deuxième point
de palpage B
U
Sélectionner le sens du palpage par softkey : même
axe, mais sens inverse de celui du premier palpage
U
Palpage : appuyer sur la touche START externe
Z
A
Y
X
B
l
Dans l'affichage Point d'origine, on trouve la distance entre les deux
points situés sur l’axe de coordonnées.
Réinitialiser l’affichage de position aux valeurs précédant la mesure de
longueur
U
U
U
U
Sélectionner la fonction de palpage : appuyer sur la softkey
PALPAGE POS
Palper une nouvelle fois le premier point de palpage
Initialiser le point d'origine à la valeur notée
Quitter le dialogue : appuyer sur la touche END
Mesure d'angle
A l’aide d’un palpeur 3D, vous pouvez déterminer un angle dans le plan
d’usinage. La mesure concerne :
„ l’angle compris entre l’axe de référence angulaire et une arête de la
pièce ou
„ l’angle compris entre deux arêtes
L’angle mesuré est affiché sous forme d’une valeur de 90° max.
398
Mode manuel et dégauchissage
12.8 Initialisation du point d'origine avec palpeur 3D
Déterminer l’angle compris entre l’axe de référence angulaire et
une arête de la pièce
U Sélectionner la fonction de palpage : appuyer sur la
softkey PALPAGE ROT
U
Angle de rotation : noter l'angle de rotation affiché si
vous souhaitez rétablir par la suite la rotation de base
réalisée auparavant
U
Exécuter la rotation de base avec le côté à comparer
(voir „Compensation du désaxage de la pièce avec un
palpeur 3D” à la page 392)
U
Avec la softkey PALPAGE ROT, afficher comme angle
de rotation l'angle compris entre l'axe de référence
angulaire et l'arête de la pièce
U
Annuler la rotation de base ou rétablir la rotation de
base d’origine
U
Initialiser l'angle de rotation à la valeur notée
PA
Déterminer l’angle compris entre deux arêtes de la pièce
U
U
U
U
U
U
Sélectionner la fonction de palpage : appuyer sur la softkey
PALPAGE ROT
Angle de rotation : noter l'angle de rotation affiché si vous désirez
rétablir par la suite la rotation de base réalisée auparavant
Exécuter la rotation de base pour le premier côté (voir
„Compensation du désaxage de la pièce avec un palpeur 3D” à la
page 392)
Palper également le deuxième côté, comme pour une rotation de
base. Ne pas mettre 0 pour l'angle de rotation!
Avec la softkey PALPAGE ROT, afficher comme angle de rotation
l'angle PA compris entre les arêtes de la pièce
Annuler la rotation de base ou rétablir la rotation de base d’origine :
initialiser l'angle de rotation à la valeur notée
HEIDENHAIN TNC 320
Z
L?
Y
a?
100
X
a?
–10
100
399
12.8 Initialisation du point d'origine avec palpeur 3D
Fonctions de palpage avec palpeurs mécaniques
ou comparateurs
Si vous ne disposez sur votre machine d'aucun palpeur 3D
électronique, vous pouvez néanmoins utiliser toutes les fonctions de
palpage manuelles décrites précédemment (exception : fonctions
d'étalonnage) à l'aide de palpeurs mécaniques ou par simple
affleurement.
Pour remplacer le signal électronique généré automatiquement par un
palpeur 3D pendant la fonction de palpage, vous appuyez sur une
touche pour déclencher manuellement le signal de commutation
permettant de transférer la position de palpage. Procédez de la
manière suivante :
400
U
Sélectionner par softkey la fonction de palpage
souhaitée
U
Positionner le palpeur mécanique à la première
position devant être pris en compte par la TNC
U
Transférer la position : appuyer sur la touche de
transfert de la position effective, la TNC enregistre la
position actuelle
U
Positionner le palpeur mécanique à la position
suivante que la TNC doit prendre en compte
U
Transférer la position : appuyer sur la touche de
transfert de la position effective, la TNC enregistre la
position actuelle
U
Le cas échéant, aborder les positions suivantes et les
transférer comme indiqué précédemment
U
Point d'origine : dans la fenêtre du menu, introduire
les coordonnées du nouveau point d'origine, valider
avec la softkey INITIAL. POINT D'ORIGINE ou
inscrire les valeurs dans un tableau (voir „Enregistrer
les valeurs de mesure issues des cycles palpeurs
dans un tableau de points zéro”, page 387, ou voir
„Enregistrer les valeurs de mesure issues des cycles
palpeurs dans le tableau Preset”, page 387)
U
Terminer la fonction de palpage : appuyer sur la
touche END
Mode manuel et dégauchissage
12.9 Inclinaison du plan d'usinage (option logiciel 1)
12.9 Inclinaison du plan d'usinage
(option logiciel 1)
Application, mode opératoire
Les fonctions d'inclinaison du plan d'usinage sont
adaptées par le constructeur de la machine à la TNC et à
la machine. Sur certaines têtes pivotantes (tables
pivotantes), le constructeur de la machine définit si les
angles programmés dans le cycle doivent être interprétés
par la TNC comme coordonnées des axes rotatifs ou
comme composantes angulaires d'un plan incliné.
Consultez le manuel de votre machine.
La TNC gère l'inclinaison de plans d'usinage sur machines équipées
de têtes pivotantes ou de tables pivotantes. Cas d'applications
classiques : perçages obliques ou contours dans plan incliné dans
l'espace. Le plan d’usinage est alors toujours incliné autour du point
zéro actif. Dans ce cas et, comme à l'habitude, l'usinage est
programmé dans un plan principal (ex. plan X/Y); toutefois, il est
exécuté dans le plan incliné par rapport au plan principal.
Y
Z
B
10°
X
Il existe trois fonctions pour l'inclinaison du plan d'usinage :
„ Inclinaison manuelle à l'aide de la softkey 3D ROT en modes Manuel
et Manivelle électronique; voir „Activation manuelle de
l'inclinaison”, page 404
„ Inclinaison programmée, cycle 19 PLAN D'USINAGE dans le
programme d'usinage (voir manuel d'utilisation des cycles, cycle 19
PLAN D'USINAGE)
„ Inclinaison programmée, fonction PLANE dans le programme
d'usinage (voir „La fonction PLANE : inclinaison du plan d'usinage
(Logiciel Option 1)” à la page 343)
Les fonctions TNC pour l'„inclinaison du plan d'usinage“ sont des
transformations de coordonnées. Le plan d'usinage est toujours
perpendiculaire à l'axe d'outil.
HEIDENHAIN TNC 320
401
12.9 Inclinaison du plan d'usinage (option logiciel 1)
Pour l'inclinaison du plan d'usinage, la TNC distingue toujours deux
types de machines :
„ Machine équipée d'une table pivotante
„ Vous devez amener la pièce à la position d'usinage souhaitée par
un positionnement correspondant de la table pivotante, par
exemple avec une séquence L
„ La position de l'axe d'outil transformé ne change pas par rapport
au système de coordonnées machine. Si vous faites tourner votre
table – et, par conséquent, la pièce – par ex. de 90°, le système
de coordonnées ne tournepas en même temps. En mode
Manuel, si vous appuyez sur la touche de sens d'axe Z+, l'outil se
déplace dans le sens Z+
„ Pour le calcul du système de coordonnées transformé, la TNC
prend en compte uniquement les décalages mécaniques de la
table pivotante concernée – appelées composantes
„transrationnelles“
„ Machine équipée d'une tête pivotante
„ Vous devez amener l'outil à la position d'usinage souhaitée par un
positionnement correspondant de la tête pivotante, par exemple
avec une séquence L
„ La position de l'axe d'outil incliné (transformé) change en fonction
du système de coordonnées machine. Si vous faites pivoter la
tête de votre machine – et, par conséquent, l'outil – par ex. de
+90° dans l'axe B, le système de coordonnées pivote en même
temps. En mode Manuel, si vous appuyez sur la touche de sens
d'axe Z+, l'outil se déplace dans le sens X+ du système de
coordonnées machine.
„ Pour le calcul du système de coordonnées transformé, la TNC
prend en compte les décalages mécaniques de la tête pivotante
(composantes translationnelles“) ainsi que les décalages
provoqués par l'inclinaison de l'outil (correction de longueur d'outil
3D).
402
Mode manuel et dégauchissage
12.9 Inclinaison du plan d'usinage (option logiciel 1)
Franchissement des points de référence avec
axes inclinés
La TNC active automatiquement le plan d'usinage incliné si cette
fonction était active au moment de la mise hors tension de la
commande. La TNC déplace alors les axes dans le système de
coordonnées incliné lorsque vous appuyez sur une touche de sens
d'axe. Positionnez l'outil de manière à éviter toute collision lors d'un
franchissement ultérieur des points de référence. Pour franchir les
points de référence, vous devez désactiver la fonction „Inclinaison du
plan d'usinage“, voir „Activation manuelle de l'inclinaison”, page 404.
Attention, risque de collision!
Assurez vous qu'en mode manuel, la fonction „inclinaison
du plan d'usinage“ soit active, et que les valeurs
angulaires introduits dans le menu correspondent aux
angles réels de l'axe incliné.
Désactivez la fonction „Inclinaison du plan d'usinage“
avant de franchir les points de référence. Veiller à éviter
toute collision. Si nécessaire, dégagez l'outil auparavant.
Affichage de positions dans le système incliné
Les positions qui apparaissent dans l'affichage d'état (NOM et EFF) se
réfèrent au système de coordonnées incliné.
Restrictions pour l'inclinaison du plan d'usinage
„ La fonction de palpage rotation de base n'est pas disponible si vous
avez activé la fonction Inclinaison du plan d'usinage en mode
manuel
„ La fonction „transférer la position effective“ n'est pas autorisée si
la fonction inclinaison du plan d'usinage est active
„ Les positionnements PLC (définis par le constructeur de la machine)
ne sont pas autorisés
HEIDENHAIN TNC 320
403
12.9 Inclinaison du plan d'usinage (option logiciel 1)
Activation manuelle de l'inclinaison
Sélectionner l'inclinaison manuelle : appuyer sur la
softkey 3D ROT
Avec la touche du curseur, mettre en surbrillance le
menu Mode Manuel
Activer l'inclinaison manuelle : appuyer sur la softkey
ACTIF
Avec la touche fléchée, positionner la surbrillance sur
l'axe rotatif désiré
Introduire l'angle d'inclinaison
Terminer la saisie des données : appuyer sur la
touche END
Pour désactiver la fonction, mettez sur Inactif les modes souhaités
dans le menu Inclinaison du plan d'usinage.
Si la fonction Inclinaison du plan d'usinage est active et si la TNC
déplace les axes de la machine en fonction des axes inclinés,
l'affichage d'état fait apparaître le symbole
.
Si vous mettez sur Actif la fonction Inclinaison du plan d'usinage dans
le mode Exécution de programme, l'angle d'inclinaison inscrit au
menu est actif dès la première séquence du programme d'usinage à
exécuter. Si vous utilisez dans le programme d'usinage le cycle 19
PLAN D'USINAGE ou bien la fonction PLANE, les valeurs angulaires
définies dans ce cycle sont actives. Les valeurs angulaires inscrites au
menu sont remplacées par les valeurs appelées.
404
Mode manuel et dégauchissage
Positionnement avec
introduction manuelle
13.1 Programmation et exécution d'opérations simples d'usinage
13.1 Programmation et exécution
d'opérations simples d'usinage
Pour des opérations simples d'usinage ou pour le prépositionnement
de l'outil, on utilise le mode Positionnement avec introduction
manuelle. Pour cela, vous pouvez introduire un petit programme en
format Texte clair HEIDENHAIN ou en DIN/ISO et l’exécuter
directement. Les cycles de la TNC peuvent être également appelés à
cet effet. Le programme est mémorisé dans le fichier $MDI.
L’affichage d’état supplémentaire peut être activé en mode
Positionnement avec introduction manuelle.
Exécuter le positionnement avec introduction
manuelle
Restriction
Les fonctions suivantes ne sont pas disponibles en mode
de fonctionnement MDI :
„ La programmation flexible de contours FK
„ Répétitions de parties de programme
„ Technique des sous-programmes
„ Corrections de trajectoires
„ Graphique de programmation
„ Appel de programme PGM CALL
„ Graphique d’exécution du programme
Sélectionner le mode Positionnement avec
introduction manuelle. Programmer au choix le fichier
$MDI
Z
Y
Lancer l'exécution du programme : touche START
externe
X
50
Exemple 1
Un trou de profondeur de 20 mm doit être percé sur une pièce unique.
Après avoir fixé et dégauchi la pièce, puis initialisé le point d'origine, le
trou peut être programmé en quelques lignes et ensuite usiné.
406
50
Positionnement avec introduction manuelle
0 BEGIN PGM $MDI MM
1 TOOL CALL 1 Z S2000
Appeler l'outil : axe d'outil Z,
Vitesse de rotation broche 2000 tours/min.
2 L Z+200 R0 FMAX
Dégager l'outil (F MAX = avance rapide)
3 L X+50 Y+50 R0 FMAX M3
Positionner l'outil avec F MAX au-dessus du trou,
marche broche
4 CYCL DEF 200 PERCAGE
Définir le cycle PERCAGE
Q200=5
;DISTANCE D'APPROCHE
Distance d'approche de l'outil au-dessus du trou
Q201=-15
;PROFONDEUR
Profondeur de trou (signe = sens de l'usinage)
Q206=250
;AVANCE PLONGÉE PROF.
Avance de perçage
Q202=5
;PROFONDEUR DE PASSE
Profondeur de la passe avant le retrait
Q210=0
;TEMPO. EN HAUT
Temporisation après chaque dégagement, en sec.
Q203=-10
;COORD. SURFACE PIÈCE
Coordonnée de la surface de la pièce
Q204=20
;SAUT DE BRIDE
Distance d'approche de l'outil au-dessus du trou
Q211=0.2
;TEMPO. AU FOND
Temporisation au fond du trou, en secondes
5 CYCL CALL
Appeler le cycle de PERCAGE
6 L Z+200 R0 FMAX M2
Dégager l'outil
7 END PGM $MDI MM
Fin du programme
Fonction droite : voir „Droite L”, page 174, cycle PERCAGE : voir
manuel d'utilisation des cycles, cycle 200 PERCAGE.
HEIDENHAIN TNC 320
407
13.1 Programmation et exécution d'opérations simples d'usinage
L'outil est pré-positionné tout d'abord au-dessus de la pièce à l'aide de
séquences linéaires, puis positionné à une distance d'approche de 5
mm au-dessus du trou. Celui-ci est ensuite usiné avec le cycle 200
PERCAGE.
13.1 Programmation et exécution d'opérations simples d'usinage
Exemple 2 : compenser le désaxage de la pièce sur machines
équipées d'un plateau circulaire
Exécuter la rotation de base avec palpeur 3D. voir Manuel d'utilisation
des cycles palpeurs „Cycles palpeurs en modes Manuel et Manivelle
électronique“, paragraphe „Compenser le déport de la pièce“.
Noter l'angle de rotation et annuler la rotation de base
Sélectionner le mode Positionnement avec
introduction manuelle
Sélectionner l'axe du plateau circulaire, introduire
l'angle noté ainsi que l'avance, par ex. L C+2.561 F50
Terminer l'introduction
Appuyer sur la touche START externe : la pièce est
dégauchie avec la rotation du plateau circulaire
408
Positionnement avec introduction manuelle
13.1 Programmation et exécution d'opérations simples d'usinage
Sauvegarder ou effacer des programmes
contenus dans $MDI
Le fichier $MDI est souvent utilisé pour des programmes courts et
provisoires. Si vous désirez toutefois enregistrer un programme,
procédez de la manière suivante :
Sélectionner le mode Mémorisation/Edition de
programme
Appeler le gestionnaire de fichiers : touche PGM
MGT (Program Management)
Marquer le fichier $MDI
Sélectionner „Copier fichier“ : softkey COPIER
FICHIER-CIBLE =
PERCAGE
Introduisez un nom sous lequel doit être mémorisé le
contenu actuel du fichier $MDI
Exécuter la copie
Quitter le gestionnaire de fichiers : softkey FIN
Autres informations : voir „Copier un fichier donné”, page 103.
HEIDENHAIN TNC 320
409
410
Positionnement avec introduction manuelle
13.1 Programmation et exécution d'opérations simples d'usinage
Test de programme et
Exécution de
programme
14.1 Graphiques
14.1 Graphiques
Application
Dans les modes Exécution de programme et Test de programme, la
TNC simule l'usinage graphiquement. A l'aide des softkeys, vous
sélectionnez le graphique en
„ Vue de dessus
„ Représentation dans 3 plans
„ Représentation 3D
Le graphique de la TNC correspond à une pièce usinée avec un outil
de forme cylindrique. Si le tableau d'outils est actif, vous pouvez
également simuler l'usinage avec une fraise hémisphérique. Pour
cela, introduisez R2 = R dans le tableau d'outils.
La TNC ne représente pas de graphique
„ lorsque la définition de la pièce brute est incorrecte dans le
programme.
„ et si aucun programme n’a été sélectionné
La TNC ne représente pas sur le graphique la surépaisseur
de rayon DR programmée dans la séquence TOOL CALL.
La simulation graphique ne peut être utilisée que d'une
façon limitée pour des parties de programmes ou des
programmes avec des axes rotatifs. Le cas échéant, la
TNC n'affiche pas de graphique.
412
Test de programme et Exécution de programme
14.1 Graphiques
Régler la vitesse du test du programme
La dernière vitesse configurée reste active (y compris
après une coupure d'alimentation) jusqu'à ce que vous la
modifiez.
Lorsque vous avez lancé un programme, la TNC affiche les softkeys
suivantes qui vous permettent de régler la vitesse de la simulation
graphique:
Fonctions
Softkey
Tester le programme à la vitesse correspondant à
celle de l'usinage (la TNC tient compte des avances
programmées)
Augmenter pas à pas la vitesse de test
Réduire pas à pas la vitesse de test
Tester le programme à la vitesse max. possible
(configuration par défaut)
Vous pouvez aussi régler la vitesse de simulation avant de lancer un
programme:
U
Commuter la barre de softkeys
U
Sélectionner les fonctions pour régler la vitesse de
simulation
U
Sélectionner par softkey la fonction désirée, par
exemple pour augmenter pas à pas la vitesse de test
HEIDENHAIN TNC 320
413
14.1 Graphiques
Vue d'ensemble : vues
Dans les modes de fonctionnement de déroulement du programme et
en mode Test de programme, la TNC affiche les softkeys suivantes:
Vue
Softkey
Vue de dessus
Représentation dans 3 plans
Représentation 3D
Restriction en cours d'exécution du programme
L'usinage ne peut pas être représenté simultanément de
manière graphique si le calculateur de la TNC est saturé
avec des opérations d'usinage complexes ou des
usinages de grandes surfaces. Exemple : usinage ligne à
ligne de toute la pièce brute avec un outil de grand
diamètre. La TNC n'affiche plus le graphique et délivre le
texte ERROR dans la fenêtre graphique. L'usinage se
poursuit néanmoins.
Graphique d'exécution du programme : la TNC n'illustre
pas graphiquement les opérations d'usinage multiaxes
pendant leur exécution. Dans ces cas là, la fenêtre
graphique affiche le message d'erreur Axe non
représentable.
Vue de dessus
La simulation graphique dans cette vue est la plus rapide.
Si vous disposez d'une souris sur votre machine,
positionnez le pointeur de la souris à n'importe quel
endroit de la pièce : la profondeur à cette position s'affiche
alors dans la barre d'état.
414
U
Sélectionner la vue de dessus à l'aide de la softkey
U
Niveau des profondeurs : plus le niveau est profond,
plus la couleur est foncée.
Test de programme et Exécution de programme
14.1 Graphiques
Représentation dans 3 plans
La pièce s'affiche en vue de dessus avec 2 coupes, comme sur un
plan. Le symbole en bas et à gauche indique si la représentation
correspond aux normes de projections 1 ou 2 selon DIN 6, chap. 1
(sélectionnable par MP7310).
La représentation dans 3 plans possède des fonctions zoom, voir
„Agrandissement de la découpe”, page 418.
Vous pouvez aussi déplacer le plan de coupe avec les softkeys :
U
Sélectionnez la softkey de la représentation de la
pièce dans 3 plans
U
Commuter la barre des softkeys jusqu'à ce
qu'apparaisse la softkey des fonctions destinées à
déplacer le plan de coupe
U
Sélectionner les fonctions destinées au déplacement
du plan de coupe : la TNC affiche les softkeys
suivantes :
Fonction
Softkeys
Déplacer le plan de coupe vertical vers la
droite ou vers la gauche
Déplace le plan de coupe vertical vers
l'avant ou vers l'arrière
Déplace le plan de coupe horizontal vers le
haut ou vers le bas
La position du plan de coupe est affichée dans l'écran pendant le
décalage.
Par défaut le plan de coupe est situé au centre de la pièce dans le plan
d'usinage, et sur la face supérieure de la pièce dans l'axe d'outil.
HEIDENHAIN TNC 320
415
14.1 Graphiques
Représentation 3D
La TNC représente la pièce dans l’espace.
Vous pouvez faire pivoter avec les softkeys la représentation 3D
autour de l'axe vertical ou la faire basculer autour de l'axe horizontal.
Si vous avez raccordé une souris sur votre TNC, vous pouvez aussi
exécuter cette fonction en maintenant enfoncée la touche droite de la
souris.
Au début de la simulation graphique, vous pouvez représenter les
contours de la pièce brute sous forme de cadre.
Les fonctions zoom sont disponibles en mode Test de programme,
voir „Agrandissement de la découpe”, page 418.
U
Sélectionner la représentation 3D par softkey.
La vitesse du graphique 3D dépend de la longueur de
l'arête de coupe (colonne LCUTS du tableau d'outils). Si 0
est défini dans LCUTS (configuration par défaut), la
simulation calcule avec une longueur de coupe de
longueur infinie, ce qui entraîne une durée de traitement
élevée.
416
Test de programme et Exécution de programme
14.1 Graphiques
Faire tourner la représentation 3D et l'agrandir/la diminuer
U Commuter la barre de softkeys jusqu'à ce
qu'apparaisse la softkey correspondant aux fonctions
destinées à faire tourner et agrandir/diminuer la pièce
U
Sélectionner les fonctions pour faire tourner et
agrandir/diminuer la pièce :
Fonction
Softkeys
Basculer verticalement la représentation
par pas de 5°
Faire basculer horizontalement la
représentation par pas de 5°
Agrandir pas à pas la représentation. Si la
représentation a été agrandie, la TNC
affiche la lettre Z dans le pied de page de la
fenêtre graphique
Réduire pas à pas la représentation Si la
représentation a été réduite, la TNC affiche
la lettre Z dans le pied de page de la fenêtre
graphique
Redimensionner la représentation à la
grandeur d'origine
Si vous avez raccordé une souris sur votre TNC, vous pouvez aussi
l'utiliser pour exécuter les fonctions décrites précédemment:
U
U
U
U
Pour faire tourner dans l'espace le graphique représenté : maintenir
enfoncée la touche droite de la souris et déplacer la souris. Lorsque
vous relâchez la touche droite de la souris, la TNC oriente la pièce
avec l'orientation définie
Pour décaler le graphique représenté : maintenir enfoncée la touche
centrale ou la molette de la souris et déplacer la souris. La TNC
décale la pièce dans le sens correspondant. Lorsque vous relâchez
la touche centrale de la souris, la TNC décale la pièce à la position
définie
Pour zoomer une zone donnée en utilisant la souris : maintenir
enfoncée la touche gauche de la souris pour marquer la zone de
zoom rectangulaire. Lorsque vous relâchez la touche gauche de la
souris, la TNC agrandit la pièce en fonction de la zone définie
Pour accentuer ou réduire le zoom rapidement avec la souris :
tourner la molette de la souris vers l'avant ou vers l'arrière
HEIDENHAIN TNC 320
417
14.1 Graphiques
Agrandissement de la découpe
Vous pouvez modifier la découpe dans toutes les vues en mode Test
de programme ainsi que dans un mode Exécution de programme.
Pour cela, la simulation graphique ou l'exécution du programme ne
doit pas être en cours. Un agrandissement de la découpe est toujours
actif dans tous les modes de représentation.
Modifier l'agrandissement de la découpe
Softkeys, voir tableau
U
U
Si nécessaire, arrêter la simulation graphique
Commuter la barre de softkeys dans le mode Test de programme
ou dans un mode Exécution de programme jusqu’à ce
qu'apparaissent les softkeys d'agrandissement de la découpe
U Commuter la barre de softkeys jusqu'à ce
qu'apparaissent les softkeys des fonctions
d'agrandissement de la découpe
U
Sélectionner les fonctions d'agrandissement de la
découpe
U
A l’aide de la softkey (voir tableau ci-dessous),
sélectionner le côté de la pièce
U
Réduire ou agrandir la pièce brute : maintenir
enfoncée la softkey „–“ ou „+“
U
Relancer le test ou l'exécution du programme avec la
softkey START (RESET + START rétablit la pièce
brute d'origine)
Fonction
Softkeys
Sélection face gauche/droite de la pièce
Sélection face avant/arrière de la pièce
Sélection face haut/bas de la pièce
Déplacer le plan de découpe pour
agrandir la pièce brute
Valider la découpe
La précédente simulation des opérations d'usinage est
effacée après une nouvelle découpe de la pièce. La TNC
représente comme pièce brute la zone déjà usinée.
Lorsque la TNC ne peut plus réduire ou agrandir davantage
la pièce brute, elle affiche le message d'erreur adéquat
dans la fenêtre du graphique. Pour supprimer le message
d'erreur, agrandissez ou réduisez à nouveau la pièce brute.
418
Test de programme et Exécution de programme
14.1 Graphiques
Répéter la simulation graphique
Un programme d'usinage peut être simulé graphiquement à volonté.
Pour cela, vous pouvez réinitialiser le graphique conforme à la pièce
brute ou annuler un agrandissement de celle-ci.
Fonction
Softkey
Afficher la pièce brute non usinée avec
l’agrandissement de la découpe choisi en dernier
Annuler l’agrandissement de la découpe de manière
à ce que la TNC représente la pièce usinée ou non
usinée conformément au BLK FORM d'origine
Avec la softkey ANNULER PIECE BRUTE, la TNC affiche
également après une découpe sans PR. CPTE DETAIL. –
la pièce brute dans sa dimension programmée d'origine.
Afficher l'outil
En vue de dessus et en représentation dans 3 plans, vous pouvez
afficher l'outil pendant la simulation. La TNC représente l'outil avec le
diamètre qui est défini dans le tableau d'outils.
Fonction
Softkey
Ne pas afficher l'outil pendant la simulation
Afficher l'outil pendant la simulation
HEIDENHAIN TNC 320
419
14.1 Graphiques
Calcul du temps d'usinage
Modes de fonctionnement Exécution de programme
Affichage de la durée comprise entre le début et la fin du programme.
Le chronomètre est arrêté en cas d'interruption.
Test de programme
Affichage du temps déterminé par la TNC pour la durée des
déplacements d'outils avec avance d'usinage de l'outil, la TNC incluant
les temporisations. Cette durée calculée par la TNC ne peut être
utilisée que sous condition pour calculer les temps de fabrication car
elle ne prend pas en compte les temps dépendant de la machine (par
exemple, le changement d'outil).
Sélectionner la fonction chronomètre
U Commuter la barre de softkeys jusqu’à ce que la
softkey des fonctions du chronomètre apparaisse
U
Sélectionner les fonctions du chronomètre
U
Sélectionner par softkey la fonction souhaitée, p. ex.
pour mémoriser la durée affichée
Fonctions du chronomètre
Softkey
Mémoriser la durée affichée
Afficher la somme de la durée enregistrée
avec la durée affichée
Effacer la durée affichée
Pendant le test du programme, la TNC remet le
chronomètre à zéro dès qu'un nouveau BLK-FORM est lu.
420
Test de programme et Exécution de programme
14.2 Représenter la pièce brute dans la zone d'usinage
14.2 Représenter la pièce brute dans
la zone d'usinage
Application
En mode Test de programme, vous pouvez contrôler graphiquement
la position de la pièce brute ou du point de référence dans la zone
d'usinage de la machine et activer la surveillance de la zone d'usinage
en mode Test de programme: Appuyer sur la softkey PIECE BR. DANS
ZONE TRAVAIL. Vous pouvez activer ou désactiver la fonction à l'aide de
la softkey Contrôle fin course (deuxième barre de softkeys).
Un autre parallélépipède transparent représente la pièce brute dont les
dimensions sont indiquées dans le tableau BLK FORM. La TNC prélève
les dimensions dans la définition de la pièce brute du programme
sélectionné. Le parallélépipède de la pièce brute représente le
système de coordonnées dont le point zéro est situé à l'intérieur du
parallélépipède de la zone de déplacement.
La position de la pièce brute à l'intérieur de la zone de travail n'a
normalement aucune répercussion sur le test du programme. Si vous
activez toutefois la surveillance de la zone d'usinage, vous devez
décaler „graphiquement“ la pièce brute de manière à ce qu'elle soit
située à l'intérieur de la zone d'usinage. Pour cela, utilisez les softkeys
situées dans le tableau.
Par ailleurs, vous pouvez activer le point d'origine courant pour le
mode de fonctionnement Test de programme (voir tableau suivant,
dernière ligne).
Fonction
Softkeys
Décaler la pièce brute dans le sens
positif/négatif de X
Décaler la pièce brute dans le sens
positif/négatif de Y
Décaler la pièce brute dans le sens
positif/négatif de Z
Afficher la pièce brute se référant au dernier
point d'origine initialisé
Activation ou désactivation de la fonction de
surveillance
HEIDENHAIN TNC 320
421
14.3 Fonctions d'affichage du programme
14.3 Fonctions d'affichage du
programme
Vue d'ensemble
Dans les modes de fonctionnement de déroulement du programme et
en mode Test de programme, la TNC affiche les softkeys qui vous
permettent de feuilleter page par page dans le programme d'usinage :
Fonctions
Softkey
Dans le programme, feuilleter d’une page d’écran en
arrière
Dans le programme, feuilleter d’une page d’écran en
avant
Sélectionner le début du programme
Sélectionner la fin du programme
422
Test de programme et Exécution de programme
14.4 Test de programme
14.4 Test de programme
Application
En mode Test, vous simulez le déroulement des programmes et
parties de programmes afin de réduire les erreurs de programmation
lors de son exécution. La TNC vous assiste pour détecter :
„ les incompatibilités géométriques
„ les données manquantes
„ les sauts ne pouvant être exécutés
„ les dépassements de la zone d'usinage
Vous pouvez en plus utiliser les fonctions suivantes :
„ Test de programme pas à pas
„ Arrêt du test à une séquence donnée
„ Saut de certaines séquences
„ Fonctions destinées à la représentation graphique
„ Détermination du temps d'usinage
„ Affichage d'état supplémentaire
HEIDENHAIN TNC 320
423
14.4 Test de programme
Attention, risque de collision!
Lors de la simulation graphique, la TNC ne peut pas
simuler tous les déplacements exécutés réellement par la
machine, p. ex. :
„ les déplacements lors d'un changement d'outil que le
constructeur de la machine a défini dans une macro de
changement d'outil ou via le PLC
„ les positionnements que le constructeur de la machine
a défini dans une macro de fonction M
„ les positionnements que le constructeur de la machine
exécute via le PLC
HEIDENHAIN conseille donc de lancer chaque programme
avec la prudence qui s'impose, y compris si le test du
programme n'a généré aucun message d'erreur et n'a pas
pu mettre en évidence des dommages visibles de la pièce.
Après un appel d'outil, la TNC lance systématiquement un
test de programme à la position suivante :
„ Dans le plan d'usinage, à la position X=0, Y=0
„ Dans l'axe d'outil, 1 mm au dessus du point MAX défini
dans BLK FORM
Si vous appelez le même outil, la TNC continue alors de
simuler le programme à partir de la dernière position
programmée avant l’appel de l’outil.
Pour obtenir un comportement bien défini, y compris
pendant l’usinage, nous vous conseillons, après un
changement d’outil, d'aborder systématiquement une
position à partir de laquelle la TNC peut effectuer le
positionnement sans risque de collision.
Le constructeur de la machine peut aussi définir une
macro de changement d'outil pour le mode Test de
programme de manière à simuler avec précision le
comportement de la machine, consulter le manuel de la
machine.
424
Test de programme et Exécution de programme
14.4 Test de programme
Exécuter un test de programme
Si la mémoire centrale d'outils est active, vous devez avoir activé un
tableau d'outils (état S) pour réaliser le test du programme. Pour cela,
en mode Test de programme, sélectionnez un fichier d'outils avec le
gestionnaire de fichiers (PGM MGT).
Avec la fonction BRUT DANS ZONE TRAVAIL, vous activez la
surveillance de la zone de travail dans le test de programme, voir
„Représenter la pièce brute dans la zone d'usinage”, page 421.
U
Sélectionner le mode Test de programme
U
Afficher le gestionnaire de fichiers avec la touche
PGM MGT et sélectionner le fichier que vous
souhaitez tester ou
U
Sélectionner le début du programme : avec la touche
GOTO, sélectionner la ligne „0“ et validez avec la
touche ENT
La TNC affiche les softkeys suivantes :
Fonctions
Softkey
Annuler la pièce brute et tester tout le programme
Tester tout le programme
Tester une à une chaque séquence du programme
Stopper le test du programme (la softkey n'apparaît
que si vous avez lancé le test du programme)
Vous pouvez interrompre le test du programme à tout moment – y
compris à l'intérieur des cycles d'usinage – et le reprendre ensuite.
Pour poursuivre le test, vous ne devez pas exécuter les actions
suivantes :
„ sélectionner une autre séquence avec les touches fléchées ou la
touche GOTO
„ apporter des modifications au programme
„ changer de mode de fonctionnement
„ sélectionner un nouveau programme
HEIDENHAIN TNC 320
425
14.5 Exécution de programme
14.5 Exécution de programme
Utilisation
En mode Exécution de programme en continu, la TNC exécute un
programme d’usinage de manière continue jusqu’à la fin du
programme ou jusqu’à une interruption.
En mode Exécution de programme pas à pas, vous exécutez chaque
séquence individuellement en appuyant chaque fois sur la touche
START externe.
Vous pouvez utiliser les fonctions TNC suivantes en mode Exécution
de programme :
„ Interruption de l’exécution du programme
„ Exécution du programme à partir d’une séquence donnée
„ Sauter des séquences
„ Editer un tableau d’outils TOOL.T
„ Contrôler et modifier les paramètres Q
„ Superposer un positionnement avec la manivelle
„ Fonctions destinées à la représentation graphique
„ Affichage d'état supplémentaire
426
Test de programme et Exécution de programme
14.5 Exécution de programme
Exécuter un programme d’usinage
Préparatif
1 Brider la pièce sur la table de la machine
2 Initialiser le point d'origine
3 Sélectionner les tableaux et fichiers de palettes à utiliser (état M)
4 Sélectionner le programme d'usinage (état M)
Vous pouvez modifier l’avance et la vitesse de rotation
broche à l’aide des potentiomètres.
Vous pouvez réduire l'avance lors du démarrage du
programme CN au moyen de la softkey FMAX. Cette
réduction est valable pour tous les déplacements en
avance d’usinage et en avance rapide. La valeur que vous
avez introduite n'est plus active après la mise hors/sous
tension de la machine. Après la mise sous tension, pour
rétablir l'avance max. définie, vous devez réintroduire la
valeur numérique correspondante.
Exécution de programme en continu
U Lancer le programme d'usinage avec la touche START externe
Exécution de programme pas à pas
U Lancer une à une chaque séquence du programme d'usinage avec
la touche START externe
HEIDENHAIN TNC 320
427
14.5 Exécution de programme
Interrompre l'usinage
Vous disposez de plusieurs possibilités pour interrompre l’exécution
d’un programme :
„ Interruptions programmées
„ Touche STOP externe
„ Commutation sur Exécution de programme pas à pas
Lorsque la TNC enregistre une erreur pendant l’exécution du
programme, elle interrompt alors automatiquement l’usinage.
Interruptions programmées
Vous pouvez définir des interruptions directement dans le programme
d'usinage. La TNC interrompt l'exécution de programme dès que le
programme d'usinage arrive à la séquence contenant l'une des
indications suivantes :
„ STOP (avec ou sans fonction auxiliaire)
„ Fonction auxiliaire M0, M2 ou M30
„ Fonction auxiliaire M6 (définie par le constructeur de la machine)
Interruption à l'aide de la touche STOP externe
U Appuyer sur la touche STOP externe : au moment où vous appuyez
sur la touche, la séquence en cours ne sera pas exécutée
intégralement ; le symbole d'arrêt de la CN clignote (voir tableau)
U Si vous ne désirez pas poursuivre l'usinage, arrêtez la TNC avec la
softkey STOP INTERNE : le symbole Arrêt CN s'éteint de l'affichage
d'état. Dans ce cas, relancer le programme à partir du début
Symbole
Signification
Programme arrêté
Interrompre l’usinage en commutant sur le mode Exécution de
programme pas à pas
Pendant que le programme d'usinage est exécuté en mode Exécution
de programme en continu, sélectionnez Exécution de programme pas
à pas. La TNC interrompt l'usinage lorsque la séquence d'usinage en
cours est achevée.
428
Test de programme et Exécution de programme
14.5 Exécution de programme
Déplacer les axes de la machine pendant une
interruption
Vous pouvez déplacer les axes de la machine pendant une
interruption, de la même manière qu’en mode Manuel.
Exemple d'application :
Dégagement de la broche après un bris d'outil
U Interrompre l'usinage
U Déverrouiller les touches de sens externes : appuyer sur la softkey
DEPLACEMENT MANUEL
U Déplacer les axes machine avec les touches de sens externes
Sur certaines machines, vous devez appuyer sur la touche
START externe après avoir actionné la softkey
DEPLACEMENT MANUEL pour déverrouiller les touches
de sens externes. Consultez le manuel de votre machine.
HEIDENHAIN TNC 320
429
14.5 Exécution de programme
Reprendre l’exécution du programme après un
arrêt d'usinage
Si vous interrompez un programme avec STOP INTERNE,
vous devez démarrer le programme avec la fonction
AMORCE SEQUENCE N ou avec GOTO „0“.
Si vous interrompez l’exécution du programme dans un
cycle d’usinage, redémarrez au début du cycle. Les
phases d’usinage déjà exécutées par la TNC le seront à
nouveau.
Si vous interrompez l'exécution du programme à l'intérieur d'une
répétition de partie de programme ou d'un sous-programme, vous
devez retourner à la position de l'interruption à l'aide de la fonction
AMORCE A SEQUENCE N.
Lors d’une interruption de l’exécution du programme, la TNC
mémorise :
„ les données du dernier outil appelé
„ les conversions de coordonnées actives (ex. décalage du point zéro,
rotation, image miroir)
„ les coordonnées du dernier centre de cercle défini
Veillez à ce que les données mémorisées restent actives
jusqu'à ce que vous les annuliez (p. ex. en sélectionnant
un nouveau programme).
Les données mémorisées sont utilisées pour réaccoster le contour
après déplacement manuel des axes de la machine pendant une
interruption (softkey ABORDER POSITION).
430
Test de programme et Exécution de programme
14.5 Exécution de programme
Poursuivre l'exécution du programme avec la touche START
Vous pouvez relancer l'exécution du programme à l'aide de la touche
START externe si vous avez arrêté le programme :
„ en appuyant sur la touche STOP externe
„ avec une interruption programmée
Poursuivre l’exécution du programme à la suite d’une erreur
Avec un message d’erreur non clignotant :
U
U
U
Supprimer la cause de l’erreur
Effacer le message d'erreur à l'écran : appuyer sur la touche CE
Relancer ou poursuivre l’exécution du programme à l’endroit où il a
été interrompu
Avec un message d’erreur clignotant :
U Maintenir enfoncée la touche END pendant deux secondes, la TNC
effectue un démarrage à chaud
U Supprimer la cause de l’erreur
U Relancer
Si l’erreur se répète, notez le message d’erreur et prenez contact avec
le service après-vente.
HEIDENHAIN TNC 320
431
14.5 Exécution de programme
Reprendre le programme à un endroit
quelconque (amorce de séquence)
La fonction AMORCE A SEQUENCE N doit être adaptée et
validée par le constructeur de la machine Consultez le
manuel de votre machine.
Avec la fonction AMORCE A SEQUENCE N, (amorce de séquence),
vous pouvez exécuter un programme d'usinage à partir de n'importe
quelle séquence N. Dans ses calculs, la TNC tient compte de l'usinage
de la pièce jusqu'à cette séquence. L'usinage peut être représenté
graphiquement.
Si vous avez interrompu un programme par un STOP INTERNE, la TNC
vous propose automatiquement la séquence N à l'intérieur de laquelle
vous avez arrêté le programme.
L’amorce de séquence ne doit pas démarrer dans un sousprogramme.
Tous les programmes, tableaux et fichiers de palettes dont
vous avez besoin doivent être sélectionnés dans un mode
Exécution de programme (état M).
Si le programme contient jusqu'à la fin de l'amorce de
séquence une interruption programmée, l'amorce de
séquence sera interrompue à cet endroit. Pour poursuivre
l'amorce de séquence, appuyez sur la touche
STARTexterne.
Après une amorce de séquence, vous devez déplacer
l'outil à l'aide de la fonction ABORDER POSITION jusqu'à
la position calculée.
La correction de la longueur d'outil n'est activée que par
l'appel d'outil et une séquence de positionnement
suivante. Ceci reste valable que si vous n'avez modifié que
la longueur d'outil.
432
Test de programme et Exécution de programme
14.5 Exécution de programme
Dans le cas d'une amorce de séquence, la TNC saute tous
les cycles palpeurs. Les paramètres de résultat issus de
ces cycles peuvent le cas échéant ne pas comporter de
valeurs.
Après un changement d'outil dans le programme
d'usinage, vous ne devez pas utiliser l'amorce de
séquence si :
„ vous lancez le programme dans une séquence FK
„ le filtre stretch est actif
„ vous utilisez l'usinage de palettes
„ vous lancez le programme pour un cycle de filetage
(cycles 17, 18, 19, 206, 207 et 209) ou si vous lancez la
séquence de programme suivante
„ vous utilisez les cycles palpeurs 0, 1 ou 3 avant de lancer
le programme
HEIDENHAIN TNC 320
433
14.5 Exécution de programme
U
Sélectionner comme début de l'amorce la première séquence du
programme actuel : introduire GOTO „0“.
U Sélectionner l'amorce de séquence : appuyer sur la
softkey AMORCE SEQUENCE
U
Amorce jusqu'à N : introduire le numéro N de la
séquence où doit s'arrêter l'amorce
U
Programme : introduire le nom du programme
contenant la séquence N
U
Répétitions : introduire le nombre de répétitions à
prendre en compte dans l'amorce de séquence si la
séquence N se trouve dans une répétition de partie
de programme ou dans un sous-programme appelé
plusieurs fois
U
Lancer l'amorce de séquence : appuyer sur la touche
START externe
U
Aborder le contour (voir paragraphe suivant)
Entrée avec la touche GOTO
Si l'on effectue l'entrée avec la touche GOTO numéro de
séquence, ni la TNC, ni l'automate PLC n'exécutent de
fonctions garantissant une entrée en toute sécurité.
Quand vous retournez dans un sous-programme avec la
touche GOTO numéro de séquence :
„ la TNC ne tient pas compte de la fin du sous-programme
(LBL 0)
„ la TNC annule la fonction M126 (déplacement des axes
rotatifs avec optimisation de la course)
Dans ce cas, il faut toujours entrer avec la fonction Amorce
de séquence!
434
Test de programme et Exécution de programme
14.5 Exécution de programme
Réaccoster le contour
La fonction ABORDER POSITION permet le réaccostage du contour
de la pièce dans les cas suivants :
„ Réaccoster le contour après déplacement des axes de la machine
lors d'une interruption réalisée sans STOP INTERNE
„ Réaccoster le contour après une amorce avec AMORCE A
SEQUENCE N, p. ex. après une interruption avec STOP INTERNE
„ Lorsque la position d'un axe s'est modifiée après l'ouverture de la
boucle d'asservissement lors d'une interruption de programme (en
fonction de la machine)
U
U
U
U
U
Sélectionner le réaccostage du contour : sélectionner la softkey
ABORDER POSITION
Si nécessaire, rétablir l'état de la machine
Déplacer les axes dans l’ordre proposé par la TNC à l’écran : appuyer
sur la touche START externe.
Déplacer les axes dans n'importe quel ordre : appuyer sur les
softkeys ABORDER X, ABORDER Z etc. et activer à chaque fois
avec la touche START externe
Poursuivre l’usinage : appuyer sur la touche START externe
HEIDENHAIN TNC 320
435
14.6 Lancement automatique du programme
14.6 Lancement automatique du
programme
Application
Pour pouvoir exécuter le lancement automatique des
programmes, la TNC doit avoir été préparée par le
constructeur de votre machine, voir manuel de la machine.
Attention danger pour l'opérateur
La fonction Autostart ne doit pas être utilisée sur les
machines non équipées d’une zone d’usinage fermée.
A l'aide de la softkey AUTOSTART (voir figure en haut à droite), dans
un mode Exécution de programme et à une heure programmable,
vous pouvez lancer le programme actif dans le mode de
fonctionnement concerné :
436
U
Afficher la fenêtre permettant de définir l'heure du
lancement du programme (voir fig. de droite, au
centre)
U
Heure (heu:min:sec) : heure à laquelle le programme
doit être lancé
U
Date (JJ.MM.AAAA) : date à laquelle le programme
doit être lancé
U
Pour activer le lancement : sélectionner la softkey OK
Test de programme et Exécution de programme
14.7 Sauter des séquences
14.7 Sauter des séquences
Application
Lors du test ou de l'exécution du programme, vous pouvez sauter les
séquences marquées du signe „/“ lors de la programmation :
U
Ne pas exécuter ou ne pas tester les séquences
marquées du signe „/“ : régler la softkey sur ON
U
Exécuter ou tester les séquences marquées du signe
„/“ : régler la softkey sur OFF
Cette fonction n'est pas active pour la séquence TOOL DEF.
Le réglage choisi en dernier reste mémorisé même après
une coupure d'alimentation.
Insérer le caractère „/“
U
En mode Programmation, sélectionnez la séquence dans laquelle
vous souhaitez insérer le caractère de saut
U Choisir la softkey INSERER
Effacer le caractère „/“
U
En mode Programmation, sélectionnez la séquence dans laquelle
vous désirez effacer le caractère de saut
U Choisir la softkey SUPPRIMER
HEIDENHAIN TNC 320
437
14.8 Arrêt optionnel programmé
14.8 Arrêt optionnel programmé
Application
La TNC interrompt optionnellement l'exécution du programme dans
les séquences où M1 a été programmée. Si vous utilisez M1 en mode
Exécution de programme, la TNC ne désactive pas la broche et
l'arrosage.
438
U
Ne pas arrêter l'exécution ou le test du programme
dans les séquences où M1 a été programmée : régler
la softkey sur OFF
U
Arrêter l'exécution ou le test du programme dans les
séquences où M1 a été programmée : régler la
softkey sur ON
Test de programme et Exécution de programme
Fonctions MOD
15.1 Sélectionner la fonction MOD
15.1 Sélectionner la fonction MOD
Grâce aux fonctions MOD, vous disposez d'autres affichages et
possibilités d'introduction. Les fonctions MOD disponibles dépendent
du mode de fonctionnement sélectionné.
Sélectionner les fonctions MOD
Sélectionner le mode de fonctionnement dans lequel vous désirez
modifier des fonctions MOD.
U
Sélectionner les fonctions MOD : appuyer sur la
touche MOD. Les figures de droite montrent des
menus types pour le mode Mémorisation/Edition de
programme (fig. en haut à droite) et Test de
programme (fig. en bas à droite) et dans un mode
Machine (fig. à la page suivante)
Modifier les configurations
U
Sélectionner la fonction MOD avec les touches fléchées
Pour modifier une configuration, vous disposez – selon la fonction
sélectionnée – de trois possibilités :
„ Introduction directe d'une valeur numérique, p. ex. pour définir la
limitation de la zone de déplacement
„ Modification de la configuration en appuyant sur la touche ENT, p.
ex. pour définir l'introduction du programme
„ Modification de la configuration via une fenêtre de sélection. Si
plusieurs solutions s'offrent à vous, avec la touche GOTO, vous
pouvez afficher une fenêtre qui vous permet de visualiser en bloc
toutes les possibilités de configuration. Sélectionnez directement la
configuration retenue en appuyant sur la touche numérique
correspondante (à gauche du double point) ou à l'aide de la touche
fléchée, puis validez avec la touche ENT. Si vous ne désirez pas
modifier la configuration, fermez la fenêtre avec la touche END
Quitter les fonctions MOD
U
Quitter la fonction MOD : appuyer sur la softkey FIN ou sur la touche
END
440
Fonctions MOD
15.1 Sélectionner la fonction MOD
Vue d'ensemble des fonctions MOD
Selon le mode de fonctionnement sélectionné, vous disposez des
fonctions suivantes :
Programmation :
„ Afficher les différents numéros de logiciel
„ Introduire un code
„ Si nécessaire, paramètres utilisateur spécifiques de la machine
„ Informations légales
Test de programme :
„ Afficher les différents numéros de logiciel
„ Afficher le tableau d’outils actif en mode Test de programme
„ Afficher le tableau de points zéro actif en mode Test de programme
Tous les autres modes :
„ Afficher les différents numéros de logiciel
„ Sélectionner l'affichage de positions
„ Définir l'unité de mesure (mm/inch)
„ Définir le langage de programmation en MDI
„ Définir les axes pour le transfert de la position courante
„ Afficher les temps de fonctionnement
HEIDENHAIN TNC 320
441
15.2 Numéros de logiciel
15.2 Numéros de logiciel
Application
Les numéros de logiciel suivants apparaissent à l'écran de la TNC lors
de la sélection des fonctions MOD :
„ Type de commande : modèle de la commande (gérée par
HEIDENHAIN)
„ Logiciel CN : numéro du logiciel CN (géré par HEIDENHAIN)
„ Logiciel CN : numéro du logiciel CN (géré par HEIDENHAIN)
„ NC noyau : numéro du logiciel CN (géré par HEIDENHAIN)
„ Logiciel PLC : numéro ou nom du logiciel automate PLC (géré par
le constructeur de votre machine)
„ Niveau de développement (FCL=Feature Content Level):
Niveau de développement installé sur la commande (voir „Niveau
de développement (fonctions „upgrade“)” à la page 7).
442
Fonctions MOD
15.3 Introduire un code
15.3 Introduire un code
Application
La TNC a besoin d’un code pour les fonctions suivantes :
Fonction
Code
Sélectionner les paramètres utilisateur
123
Configurer la carte Ethernet
NET123
Valider les fonctions spéciales lors de la
programmation des paramètres Q
555343
HEIDENHAIN TNC 320
443
15.4 Configurer les interfaces de données
15.4 Configurer les interfaces de
données
Interface série de la TNC 320
La TNC 320 utilise automatiquement le protocole de transmission
LSV2 pour la transmission série des données. Le protocole LSV2 est
défini par défaut et ne peut pas être modifié, mise à part la vitesse en
bauds (paramètre-machine baudRateLsv2). Vous pouvez aussi définir
un autre type de transmission (interface). Les possibilités de
configuration décrites ci-après ne sont valides que pour l’interface qui
vient d'être définie.
Application
Pour configurer une interface de données, ouvrez le gestionnaire de
fichiers (PGM MGT) et appuyez sur la touche MOD. Appuyez ensuite
à nouveau sur la touche MOD et saisissez le code 123. La TNC affiche
le paramètre utilisateur GfgSerialInterface dans lequel vous pouvez
introduire les configurations suivantes :
Configurer l'interface RS-232
Ouvrez le répertoire RS232. La TNC affiche les possibilités de
configuration suivantes :
Régler le TAUX EN BAUDS (baudRate)
Le TAUX EN BAUDS (vitesse de transmission des données) peut être
choisi entre 110 et 115.200 bauds.
Configurer le protocole (protocole)
Le protocole de transmission des données gère le flux de données lors
d’une transmission série (comparable au MP5030 sur l'iTNC 530).
Le réglage BLOC A BLOC désigne ici une forme de
transmission qui transmet les données en blocs. A ne pas
confondre avec la transmission bloc à bloc et l'exécution
simultanée des blocs des anciennes commandes de
contournage TNC. La commande ne gère pas la réception
bloc à bloc et l'exécution simultanée de ce même
programme.
Protocole de transmission des données
Choix
Transmission de données standard
STANDARD
Transmission des données par paquets
BLOCKWISE
Transmission sans protocole
RAW_DATA
444
Fonctions MOD
15.4 Configurer les interfaces de données
Configurer les bits de données (dataBits)
En configurant dataBits, vous définissez si un caractère doit être
transmis avec 7 ou 8 bits de données.
Vérifier la parité (parity)
Le bit de parité permet de détecter les erreurs de transmission. Le bit
de parité peut être défini de trois façons :
„ Aucune définition de parité (NONE) : on renonce à la détection des
erreurs
„ Parité paire (EVEN) : il y a une erreur lorsqu'en cours de vérification,
le récepteur compte un nombre impair de bits à 1.
„ Parité impaire (ODD) : il y a une erreur lorsqu'en cours de
vérification, le récepteur compte un nombre pair de bits à 1.
Configurer les bits de stop (stopBits)
Une synchronisation du récepteur pour chaque caractère transmis est
assurée avec un bit de start et un ou deux bits de stop lors de la
transmission des données.
Configurer le handshake (contrôle de flux)
Deux appareils assurent un contrôle de la transmission des données
grâce à un handshake. On distingue entre le handshake logiciel et le
handshake matériel.
„ Aucun contrôle du flux de données (NONE) : Handshake inactif
„ Handshake matériel (RTS_CTS) : arrêt de transmission par RTS actif
„ Handshake logiciel (XON_XOFF) : arrêt de transmission par DC3
(XOFF) actif
HEIDENHAIN TNC 320
445
15.4 Configurer les interfaces de données
Configuration de la transmission des données
avec le logiciel TNCserver pour PC
Dans les paramètres utilisateur (serialInterfaceRS232 / Définition
des données pour les ports série / RS232), procédez aux
paramétrages suivantes :
Paramètres
Choix
Taux de transmission des
données en bauds
Doit correspondre au
paramétrage dans TNCserver
Protocole de transmission des
données
BLOCKWISE
Bits de données dans chaque
caractère transmis
7 Bit
Mode de contrôle de la parité
PAIRE
Nombre de bits de stop
1 bit de stop
Définir le mode Handshake
RTS_CTS
Système fichier pour opération
sur fichier
FE1
Sélectionner le mode de fonctionnement du
périphérique (système de fichier)
En modes FE2 et FEX, vous ne pouvez pas utiliser les
fonctions „importer tous les programmes“, „importer le
programme proposé“ et „importer le répertoire“
Périphérique
Mode de
fonctionnement
PC avec logiciel de transmission
HEIDENHAIN TNCremoNT
LSV2
Unité à disquettes HEIDENHAIN
FE1
Autres périphériques, tels
qu'imprimante, lecteur, lecteur de
ruban perforé, PC sans
TNCremoNT
FEX
446
Symbole
Fonctions MOD
15.4 Configurer les interfaces de données
Logiciel de transmission de données
Il est conseillé d'utiliser le logiciel de transmission de données
HEIDENHAIN TNCremo pour la transfert de fichiers de ou vers la TNC.
Vous pouvez commander toute les commandes HEIDEHAIN avec
TNCremo via l'interface série ou l'interface Ethernet.
La dernière version de TNCremo peut être téléchargée
gratuitement à partir du site HEIDENHAIN
(www.heidenhain.de, <Services et documentation>,
<Software>, <PC-Software>, <TNCremoNT>).
Conditions requises du système pour TNCremo :
„ PC avec processeur 486 ou plus récent
„ Système d'exploitation Windows 95, Windows 98, Windows NT
4.0, Windows 2000, Windows XP, Windows Vista
„ Mémoire vive 16 Mo
„ 5 Mo libres sur votre disque dur
„ Un port série disponible ou connexion au réseau TCP/IP
Installation sous Windows
Lancez le programme d'installation SETUP.EXE à partir du
gestionnaire de fichiers (explorer)
U Suivez les indications du programme d'installation
U
Démarrez TNCremont dans Windows
U Cliquez sur <Start>, <Programme>, <Applications HEIDENHAIN>,
<TNCremo>
Quand vous démarrez TNCremo pour la première fois, TNCremo
essaie d'établir automatiquement une liaison avec la TNC.
HEIDENHAIN TNC 320
447
15.4 Configurer les interfaces de données
Transfert des données entre la TNC et TNCremoNT
Avant de transférer un programme de la TNC vers un PC,
assurez-vous impérativement que vous avez bien
enregistré le programme actuellement sélectionné dans la
TNC. La TNC enregistre automatiquement les
modifications lorsque vous changez de mode de
fonctionnement de la TNC ou lorsque vous appelez le
gestionnaire de fichiers avec la touche PGM MGT.
Vérifiez si la TNC est bien raccordée sur le bon port série de votre
ordinateur ou sur le réseau.
Après avoir lancé TNCremoNT, dans la partie supérieure de la fenêtre
principale 1 se trouvent tous les fichiers mémorisés du répertoire actif.
Avec <Fichier>, <Changer de répertoire>, vous pouvez sélectionner
n'importe quel lecteur ou un autre répertoire de votre ordinateur.
Si vous voulez commander le transfert des données à partir du PC,
vous devez établir la liaison sur le PC de la manière suivante :
U
U
U
Sélectionnez <Fichier>, <Etablir la liaison>. TNCremoNT récupère
maintenant de la TNC la structure des fichiers et des répertoires et
l'affiche dans la partie inférieure de la fenêtre principale 2 .
Pour transférer un fichier de la TNC vers le PC, sélectionnez le fichier
dans la fenêtre TNC en cliquant dessus avec la souris et glissez le
fichier marqué dans la fenêtre 1 du PC en maintenant la touche de
la souris enfoncée
Pour transférer un fichier du PC vers la TNC, sélectionnez le fichier
dans la fenêtre PC en cliquant dessus avec la souris et glissez le
fichier marqué dans la fenêtre 2 de la TNC en maintenant la touche
de la souris enfoncée
Si vous voulez commander le transfert des données à partir de la TNC,
vous devez établir la liaison sur le PC de la manière suivante :
U
U
Sélectionnez <Fonctions spéciales>, <TNCserver>. TNCremoNT
lance maintenant le mode serveur de fichiers et peut donc recevoir
les données de la TNC ou en envoyer vers la TNC.
Sur la TNC, sélectionnez les fonctions du gestionnaire de fichiers à
l'aide de la touche PGM MGT (voir „Transfert des données vers/à
partir d'un support externe de données” à la page 109) et transférez
les fichiers souhaités.
Fermer TNCremoNT
Sélectionnez le sous-menu <Fichier>, <Fermer>
Utilisez également l'aide contextuelle de TNCremoNT
dans laquelle toutes les fonctions sont expliquées. Vous
l'appelez au moyen de la touche F1.
448
Fonctions MOD
15.5 Interface Ethernet
15.5 Interface Ethernet
Introduction
En standard, la TNC est équipée d'une carte Ethernet pour connecter
au réseau la commande en tant que client. La TNC transfère les
données au moyen de la carte Ethernet
„ en protocole smb (server message block) pour systèmes
d'exploitation Windows ou
„ en utilisant la famille de protocoles TCP/IP (Transmission Control
Protocol/Internet Protocol) et à l'aide du NFS (Network File System)
Possibilités de raccordement
Vous pouvez connecter la carte Ethernet de la TNC via la prise RJ45
(X26,100BaseTX ou 10BaseT) soit à votre réseau ou soit directement
à un PC. La connexion est isolée galvaniquement de l'électronique de
la commande.
Pour le raccordement 100BaseTX ou 10BaseT, utilisez un câble
Twisted Pair pour relier la TNC à votre réseau.
La longueur maximale du câble entre la TNC et un point de
jonction dépend de la classe de qualité du câble et de son
enveloppe ainsi que du type de réseau (100BaseTX ou
10BaseT).
Vous pouvez également connecter à peu de frais la TNC
directement à un PC équipé d’une carte Ethernet. Pour
cela, reliez la TNC (raccordement X26) et le PC au moyen
d'un câble croisé Ethernet (désignation du commerce : ex.
câble patch croisé ou câble STP croisé)
HEIDENHAIN TNC 320
TNC
PC
10BaseT / 100BaseTx
449
15.5 Interface Ethernet
Connecter la commande au réseau
Sommaire des fonctions de la configuration réseau
U Dans le gestionnaire de fichiers (PGM MGT), sélectionnez la softkey
Réseau
Fonction
Softkey
Etablir une liaison avec le lecteur-réseau sélectionné.
Lorsque la liaison est établie, une case cochée
apparait sous Mount pour confirmation.
Coupe la connexion avec un lecteur réseau.
Active ou désactive la fonction Automount
(= connexion automatique du lecteur réseau au
démarrage de la commande). L’état de la fonction est
signalé par une case cochée sous Auto dans le
tableau de lecteurs réseau.
La fonction Ping vous permet de vérifier s’il y a une
liaison disponible avec un participant donné du
réseau. La saisie de l’adresse comporte quatre
décimales séparés par un point (dotted decimal
notation).
La TNC affiche une fenêtre récapitulative contenant
des informations sur les connexions actives du
réseau.
Configure l’accès aux lecteurs réseau (ne peut être
sélectionné qu’après introduction du code MOD
NET123)
Ouvre la boîte de dialogue pour l’édition des données
d’une connexion réseau existante (ne peut être
sélectionné qu’après introduction du code MOD
NET123)
Configure l’adresse réseau de la commande (ne peut
être sélectionné qu’après introduction du code MOD
NET123)
Supprime une connexion réseau existante. (ne peut
être sélectionné qu’après introduction du code MOD
NET123)
450
Fonctions MOD
15.5 Interface Ethernet
Configurer l’adresse réseau de la commande
U Connectez la TNC (raccordement X26) à un réseau ou à un PC
U Dans le gestionnaire de fichiers (PGM MGT), sélectionnez la softkey
Réseau.
U Appuyez sur la touche MOD. Introduisez ensuite le code NET123.
U Appuyez sur la softkey CONFIGURER RESEAU pour introduire les
paramètres généraux du réseau (voir figure de droite au centre)
U La commande ouvre alors une boîte de dialogue pour la
configuration réseau
Configuration
Signification
HOSTNAME
Nom d'identification de la commande sur le
réseau. Si vous utilisez un serveur Hostname,
vous devez inscrire ici le „Fully Qualified
Hostname“. Si vous n'inscrivez ici aucun nom,
la commande utilise ce qu'on appelle
l'authentification ZERO.
DHCP
DHCP = Dynamic Host Configuration Protocol
Dans le menu déroulant, configurez OUI ; la
commande reçoit automatiquement d'un
serveur DHCP situé sur le réseau son adresse
réseau (adresse IP), le masque sous-réseau, le
routeur par défaut et une éventuelle adresse de
diffusion. Le serveur DHCP identifie la
commande à partir de l’Hostname. Votre réseau
d’entreprise doit être configuré pour gérer cette
fonction. Contactez votre administrateur
réseau.
ADRESSE IP
Adresse réseau de la commande : dans chacun
des quatre champs de saisie situés côte à côte,
vous pouvez introduire trois chiffres de
l’adresse IP. Pour passer au champ suivant,
appuyez sur la touche ENT. L'adresse réseau de
la commande est attribuée par votre
responsable réseau.
MASQUE
SOUS-RESEAU
Sert à distinguer entre l'ID du réseau et de de
l'hôte : le masque sous-réseau de la commande
est donné par votre responsable réseau.
HEIDENHAIN TNC 320
451
15.5 Interface Ethernet
Configuration
Signification
DIFFUSION
L'adresse de diffusion de la commande n'est
utilisée que si elle diffère de la configuration
standard. La configuration standard comporte
l'ID du réseau et de l'hôte dont tous les bits sont
à1
ROUTER
Adresse réseau du routeur par défaut :
n'introduire que si votre réseau comporte
plusieurs réseaux partiels connectés entre eux
par routeur.
La nouvelle configuration réseau ne devient active
qu’après avoir redémarré la commande. Une fois que la
configuration réseau est terminée, on redémarre la
commande avec le bouton ou la softkey OK.
Configurer l’accès réseau à d’autres périphériques (mount)
Faites paramétrer la configuration réseau de la TNC par un
spécialiste réseau.
Les systèmes d'exploitation Windows n'exigent pas
toujours l'introduction des paramètres username,
workgroup et password.
U
U
U
U
U
Connectez la TNC (raccordement X26) à un réseau ou un PC
Dans le gestionnaire de fichiers (PGM MGT), sélectionnez la softkey
Réseau.
Appuyez sur la touche MOD. Introduisez ensuite le code NET123.
Appuyez sur la softkey DEFINIR CONNECTION RESEAU
La commande ouvre alors une boîte de dialogue pour la
configuration réseau
Configuration
Signification
Mount-Device
„ Liaison via NFS : nom du répertoire qui doit
être „monté“. Il est constitué de l’adresse
réseau de l’appareil, de deux points, d'un slash
et du nom du répertoire. Introduction de
l'adresse réseau sous forme de quatre
nombres décimaux séparés par un point
(dotted decimal notation), p. ex.
160.1.180.4:/PC. Pour le chemin d'accès,
tenez compte des minuscules et majuscules
„ Connexion d'ordinateur individuel Windows via
SMB : introduire le nom du réseau et le nom
d'accès du calculateur, par exemple
\\PC1791NT\PC
452
Fonctions MOD
Signification
Point de
montage
Nom de l'appareil : le nom de l’appareil indiqué ici
est affiché sur la commande dans le gestionnaire
de programmes pour le réseau „monté“, par
exemple WORLD: (le nom doit se terminer avec
deux points!)
Système de
fichiers
Type de système de fichiers :
Option NFS
rsize : taille du paquet pour la réception de
données, en octets
15.5 Interface Ethernet
Configuration
„ NFS : Network File System
„ SMB : Réseau Windows
wsize : taille du paquet pour l'envoi de données,
en octets
time0 : temps en dixièmes de seconde à l'issu
duquel la commande réitère un Remote
Procedure Call auquel n'a pas répondu le serveur
soft : avec OUI, le Remote Procedure Call est
répété jusqu’à ce que le serveur NFS réponde. Si
l’on introduit NON, il n’est pas répété
Option SMB
Options concernant le type de système de fichier
SMB : les options sont indiquées sans espace et
séparées seulement par une virgule. Respectez
les majuscules/minuscules.
Options :
ip : adresse IP du PC Windows auquel la
commande doit être connectée
username : nom d'utilisateur avec lequel la
commande doit s'annoncer
workgroup : groupe de travail sous lequel la
commande doit s'annoncer
password : mot de passe avec lequel la
commande doit s'annoncer (80 caractères max.)
Autres options SMB : possibilité d’introduction
pour d’autres options destinées au réseau
Windows
Connexion
automatique
Automount (OUI ou NON) : à cet endroit, vous
définissez si le lecteur doit être
automatiquement „monté“ lors du démarrage
de la commande. Les périphériques „montés“
de manière non automatique peuvent l’être à
tout moment dans le gestionnaire de
programmes.
L'indication au moyen de ce protocole n'est pas valable
pour la TNC 320, c'est le protocole de transmission
conforme à RFC 864 qui est utilisé.
HEIDENHAIN TNC 320
453
15.5 Interface Ethernet
Configurations sur un PC équipé de Windows 2000
Condition requise :
La carte de réseau doit être déjà installée sur le PC et prête
à l'emploi.
Si le PC que vous désirez relier à la TNC se trouve déjà sur
le réseau de votre entreprise, nous vous conseillons de ne
pas modifier l'adresse-réseau du PC et d'adapter
l'adresse-réseau de la TNC.
U
U
U
U
U
U
U
U
Sélectionnez les configurations réseau avec <Démarrer>,
<Paramètres>, <Connexions réseau et accès distant>
Avec la touche droite de la souris, cliquez sur le symbole de
<connexion au réseau local>, puis dans le menu déroulant sur
<Propriétés>
Double-cliquez sur <Protocole Internet (TCP/IP)> pour modifier les
paramètres (voir figure en haut à droite)
Si elle n'est pas déjà activée, choisissez l'option <Utiliser l'adresse
IP suivante>
Dans le champ <Adresse IP>, introduisez la même adresse IP que
celle que vous avez déjà définie dans l'iTNC dans les configurations
de réseau propres au PC, p. ex. 160.1.180.1
Dans le champ <Masque sous-réseau>, introduisez 255.255.0.0
Validez la configuration avec <OK>
Enregistrez la configuration de réseau avec <OK>; si nécessaire,
relancez Windows
454
Fonctions MOD
15.6 Sélectionner les affichages de positions
15.6 Sélectionner les affichages de
positions
Application
Vous pouvez modifier l’affichage des coordonnées pour le mode
Manuel et les modes Exécution de programme :
La figure de droite indique différentes positions de l’outil
„ Position de départ
„ Position à atteindre par l’outil
„ Point zéro pièce
„ Point zéro machine
Pour les affichages de positions de la TNC, vous pouvez sélectionner
les coordonnées suivantes :
Fonction
Affichage
Position nominale ; valeur actuelle donnée par la
TNC
NOM
Position effective ; position actuelle de l’outil
EFF
Position de référence ; position effective calculée
par rapport au point zéro machine
REFIST
Position de référence ; position nominale
calculée par rapport au point zéro machine
REFSOLL
Erreur de poursuite ; différence entre position
nominale et position effective
ER.P
Chemin restant à parcourir jusqu'à la position
programmée ; différence entre la position
effective et la position à atteindre
DIST
La fonction MOD Affichage de position 1 vous permet de
sélectionner l’affichage de position dans l’affichage d’état.
La fonction MOD Affichage de position 2 vous permet de
sélectionner l’affichage de position dans l’affichage d’état auxiliaire.
HEIDENHAIN TNC 320
455
15.7 Sélectionner l’unité de mesure
15.7 Sélectionner l’unité de mesure
Application
Grâce à cette fonction, vous pouvez définir si la TNC doit afficher les
coordonnées en mm ou en inch (pouces).
„ Système métrique : p.ex. X = 15.789 (mm) Fonction MOD
Commutation mm/inch = mm. Affichage avec 3 chiffres après la
virgule
„ Système en pouces : Ex. X = 0.6216 (inch) : Fonction MOD
Commutation mm/inch = inch. Affichage avec 4 chiffres après la
virgule
Si l'affichage en pouces est activé, la TNC affiche également l'avance
en inch/min. Dans un programme en pouces, vous devez introduire
l'avance multipliée par 10.
456
Fonctions MOD
15.8 Afficher les durées de fonctionnement
15.8 Afficher les durées de
fonctionnement
Application
Vous pouvez afficher différentes durées de fonctionnement à l’aide de
la softkey TEMPS MACH. :
Durée de
fonctionnement
Signification
Marche commande
Durée de fonctionnement de la commande
depuis la mise en route
Marche machine
Durée de fonctionnement de la machine
depuis sa mise en route
Exécution de
programme
Durée de fonctionnement en mode
exécution depuis la mise en route
Le constructeur de la machine peut également afficher
d’autres durées. Consultez le manuel de la machine!
HEIDENHAIN TNC 320
457
458
Fonctions MOD
15.8 Afficher les durées de fonctionnement
Tableaux et
récapitulatifs
16.1 Paramètres utilisateur spécifiques de la machine
16.1 Paramètres utilisateur
spécifiques de la machine
Application
L'introduction des valeurs des paramètres s'effectue au moyen de
l'éditeur de configuration.
Afin de pouvoir réaliser la configuration des fonctions
machine pour l'utilisateur, le constructeur de votre
machine peut définir les paramètres machine disponibles
en tant que paramètres utilisateur. Le constructeur de
votre machine peut également définir dans la TNC
d'autres paramètres-machine non décrits ci-dessous.
Consultez le manuel de votre machine.
Dans l'éditeur de configuration, les paramètres machine sont résumés
dans une arborescence en tant qu'objets de paramètre. Chaque objet
de paramètre a un nom (p. ex. CfgDisplayLanguage) qui est une
abréviation de la fonction du paramètre. Un objet de paramètre, appelé
également entité, est identifié avec un „E“ dans le symbole du
répertoire de l'arborescence. Afin d'être clairement identifiés, certains
paramètres machine possèdent un nom de code. Celui-ci attribue au
paramètre un groupe (p. ex. X pour l'axe X). Chacun des répertoires de
groupe porte le nom de code et est identifié avec „K“ dans le symbole
de répertoire.
Lorsque vous vous trouvez dans l'éditeur de configuration
des paramètres utilisateur, vous pouvez modifier la
présentation des paramètres existants. Dans la
configuration par défaut, les paramètres sont affichés
avec des textes explicatifs courts. Pour afficher le nom
réel des paramètres, appuyez sur la touche de partage de
l'écran et ensuite sur la softkey AFFICHER NOM DU
SYSTEME. Procédez de la même manière pour retourner
à l'affichage par défaut.
460
Tableaux et récapitulatifs
16.1 Paramètres utilisateur spécifiques de la machine
Appeler l'éditeur de configuration
U Sélectionner le mode Programmation
U Appuyer sur la touche MOD
U Introduire le code 123
U Pour quitter l'éditeur de configuration, appuyer sur la softkey FIN
Au début de chaque ligne de l'arborescence des paramètres, la TNC
affiche une icône qui donne des informations complémentaires sur la
ligne. Signification des icônes :
„
branche existe mais fermée
„
branche ouverte
„
objet vide, ne peut pas s'ouvrir
„
paramètre-machine initialisé
„
paramètre-machine non initialisé (optionnel)
„
peut être lu mais non éditable
„
ne peut être ni lu, ni éditable
Le type d'objet de configuration est identifiable avec les symboles :
„
Code (nom de groupe)
„
Liste
„
Entité ou objet de paramètre
HEIDENHAIN TNC 320
461
16.1 Paramètres utilisateur spécifiques de la machine
Afficher l'aide
Avec la touche HELP, on peut afficher un texte d'aide pour chaque
objet de paramètre ou chaque attribut.
Si le texte d'aide ne tient pas sur une seule page (affichage, p. ex. de
1/2 en haut et à droite), on peut alors aller à la seconde page en
appuyant sur la softkey AIDE PAGE.
Pour désactiver le texte d'aide, appuyer à nouveau sur la touche HELP.
En plus du texte d'aide, l'écran affiche aussi d'autres informations
telles que l'unité de mesure, une valeur initiale, une sélection, etc. Si
le paramètre-machine sélectionné correspond à un paramètre présent
à l'intérieur de la TNC, l'écran affiche alors aussi le numéro MP
correspondant.
Liste des paramètres
Configuration des paramètres
DisplaySettings
Configuration de l'affichage à l'écran
Ordre des axes affichés
[0] à [5]
Dépend des axes disponibles
Mode d'affichage de position dans la fenêtre de position
NOM
EFF
REFEFF
REFNOM
ER.P
DIST
Mode d'affichage de position dans l'affichage d'état
NOM
EFF
REFEFF
REFNOM
ER.P
DIST
Définition séparateur décimal pour affichage de position
.
Affichage de l'avance en mode Manuel
at axis key : n'afficher l'avance que si une touche de sens d'axe est actionnée
always minimum : toujours afficher l'avance
Affichage de la position broche dans l'affichage de position
during closed loop : n'afficher la position broche que si la broche est asservie en position
during closed loop et M5 : afficher la position broche si la broche est asservie en position et avec
M5
hidePresetTable
True : softkey Tableau Preset non affichée
False : afficher softkey Tableau Preset
462
Tableaux et récapitulatifs
16.1 Paramètres utilisateur spécifiques de la machine
Configuration des paramètres
DisplaySettings
Résolution d'affichage des différents axes
Liste de tous les axes disponibles
Résolution d'affichage pour l'affichage de positions en mm ou degrés
0.1
0.05
0.01
0.005
0.001
0.0005
0.0001
0.00005 (option de logiciel Display step)
0.00001 (option de logiciel Display step)
Résolution d'affichage pour l'affichage de positions en pouces
0.005
0.001
0.0005
0.0001
0.00005 (option de logiciel Display step)
0.00001 (option de logiciel Display step)
DisplaySettings
Définition de l'unité de mesure en vigueur pour l'affichage
metric : utiliser le système métrique
inch : utiliser le système en pouces
DisplaySettings
Format des programmes CN et affichage des cycles
Programmation en dialogue conversationnel HEIDENHAIN ou en DIN/ISO
HEIDENHAIN : programmation dans le mode MDI en dialogue conversationnel.
ISO : programmation dans le mode MDI en DIN/ISO
Représentation des cycles
TNC_STD : afficher les cycles avec des commentaires
TNC_PARAM : afficher les cycles sans commentaire
HEIDENHAIN TNC 320
463
16.1 Paramètres utilisateur spécifiques de la machine
Configuration des paramètres
DisplaySettings
Configuration de la langue de dialogue CN et PLC
Langue du dialogue CN
ANGLAIS
ALLEMAND
TCHEQUE
FRANCAIS
ITALIEN
ESPAGNOL
PORTUGAIS
SUEDOIS
DANOIS
FINNOIS
NEERLANDAIS
POLONAIS
HONGROIS
RUSSE
CHINOIS
CHINESE_TRAD
SLOVENE
ESTONIEN
COREEN
LETTON
NORVEGIEN
ROUMAIN
SLOVAQUE
TURC
LITUANIEN
Langue du dialogue PLC
Voir langue du dialogue CN
Langue des messages d'erreur PLC
Voir langue du dialogue CN
Langue de l'aide
Voir langue du dialogue CN
DisplaySettings
Comportement lors de la mise sous tension de la commande
Acquitter le message 'Coupure d'alimentation'
TRUE : le démarrage de la commande ne se poursuit qu'après acquittement du message
FALSE : le message 'Coupure d'alimentation' ne s'affiche pas
Représentation des cycles
TNC_STD : afficher les cycles avec des commentaires
TNC_PARAM : afficher les cycles sans commentaire
464
Tableaux et récapitulatifs
16.1 Paramètres utilisateur spécifiques de la machine
Configuration des paramètres
ProbeSettings
Configuration du comportement de palpage
Mode Manuel : prise en compte de la rotation de base
TRUE : tenir compte d'une rotation de base lors du palpage
FALSE : exécuter toujours un déplacement paraxial lors du palpage
Mode Automatique : mesure multiple avec les fonctions de palpage
1 à 3 : nombre de palpages par opération de palpage
Mode Automatique : zone de sécurité pour mesure multiple
0,002 à 0,999 [mm] : zone où doit se situer la valeur de mesure lors d'une mesure multiple
CfgTTRoundStylus
Coordonnées du centre de la tige de palpage
[0] : coordonnée X du centre de la tige par rapport au point zéro machine
[1] : coordonnée Y du centre de la tige par rapport au point zéro machine
[2] : coordonnée Z du centre de la tige par rapport au point zéro machine
Distance d'approche au dessus de la tige de palpage pour le prépositionnement
0.001 à 99 999.9999 [mm] : distance d'approche dans le sens de l'axe d'outil
Zone de sécurité autour de la tige de palpage pour le prépositionnement
0.001 à 99 999.9999 [mm] : distance d'approche dans le plan perpendiculairement à l'axe d'outil
CfgToolMeasurement
Fonction M pour l'orientation de la broche
-1 : orientation broche directe par la CN
0 : fonction inactive
1 à 999 : numéro de la fonction M pour l'orientation broche
Sens de palpage pour l'étalonnage du rayon d'outil
X_Positif, Y_Positif, X_Négatif, Y_Négatif (en fonction de l'axe d'outil)
Ecart entre l'arête inférieure de l'outil et l'arête supérieure de la tige
0.001 à 99.9999 [mm] : décalage tige de palpage avec l'outil
Avance rapide dans le cycle de palpage
10 à 300 000 [mm/min.] : avance rapide dans le cycle de palpage
Avance de palpage lors de l'étalonnage d'outil
1 à 3 000 [mm/min.] : avance de palpage lors de l'étalonnage d'outil
Calcul de l'avance de palpage
ConstantTolerance : calcul de l'avance de palpage avec tolérance constante
VariableTolerance : calcul de l'avance de palpage avec tolérance variable
ConstantFeed : avance de palpage constante
Vitesse tangentielle max. admissible à la dent de l'outil
1 à 129 [m/min.] : vitesse de rotation adm. tangentielle de la fraise
Vitesse max. adm. lors de l'étalonnage d'outil
0 à 1 000 [tours/min.] : vitesse de rotation max. admissible
Erreur de mesure max. admissible lors de l'étalonnage d'outil
0.001 à 0.999 [mm] : première erreur de mesure max. admissible
Erreur de mesure max. admissible lors de l'étalonnage d'outil
0.001 à 0.999 [mm] : deuxième erreur de mesure max. admissible
HEIDENHAIN TNC 320
465
16.1 Paramètres utilisateur spécifiques de la machine
Configuration des paramètres
ChannelSettings
CH_NC
Cinématique active
Cinématique à activer
Liste des cinématiques de la machine
Tolérances de géométrie
Ecart autorisé pour le rayon du cercle
0.0001 à 0.016 [mm] : écart autorisé pour le rayon au point final du cercle par rapport à celui au
point initial.
Configuration des cycles d'usinage
Facteur de recouvrement dans le fraisage de poche
0.001 à 1.414 : facteur de recouvrement pour le cycle 4 FRAISAGE DE POCHE et le cycle 5 POCHE
CIRCULAIRE
Afficher le message d'erreur "Broche ?" si M3/M4 est inactive
on : délivrer le message d'erreur
off : ne pas délivrer de message d'erreur
Afficher le message d'erreur "Introduire profondeur négative"
on : délivrer le message d'erreur
off : ne pas délivrer de message d'erreur
Comportement d'approche de la paroi d'une rainure sur le corps d'un cylindre
LineNormal : approche sur une droite
CircleTangential : approche avec déplacement circulaire
Fonction M pour l'orientation de la broche
-1 : orientation broche directe par la CN
0 : fonction inactive
1 à 999 : numéro de la fonction M pour l'orientation broche
466
Tableaux et récapitulatifs
Filtre de géométrie pour filtrer des éléments linéaires
Type de filtre stretch
- Off : aucun filtre actif
- ShortCut : omission de certains points du polygone
- Average : le filtre de géométrie lisse les coins
Distance max. du contour filtré par rapport au contour non-filtré
0 à 10 [mm] : les points filtrés annulés sont à l'intérieur de la tolérance de la trajectoire à obtenir.
Longueur max. de la course obtenue après filtrage
0 à 1000 [mm] : longueur sur laquelle agit le filtrage de géométrie
Configurations de l'éditeur CN
Générer les fichiers de sauvegarde
TRUE : créer un fichier de sauvegarde après l'édition de programmes CN
FALSE : ne pas créer de fichier de sauvegarde après l'édition de programmes CN
Comportement du curseur après effacement de lignes
TRUE : après l'effacement, le curseur se trouve sur la ligne précédente (comportement iTNC)
FALSE : après l'effacement, le curseur se trouve sur la ligne suivante
Comportement du curseur sur la première et la dernière ligne
TRUE : bouclage du curseur autorisée au début/à la fin du programme
FALSE : bouclage du curseur interdit au début/à la fin du programme
Saut de ligne avec séquences multiples
ALL : Toujours représenter les lignes dans leur totalité
ACT : Ne représenter dans leur totalité que les lignes de la séquence active
NO : N'afficher les lignes dans leur totalité que si la séquence est éditée
Activer l'aide
TRUE : Toujours afficher les figures d'aide lors de l'introduction des données
FALSE : N'afficher les figures d'aide que si l'on a appuyé sur la touche HELP
Comportement de la barre de softkeys après l'introduction d'un cycle
TRUE : conserver la barre de softkeys des cycles activée après avoir définir le cycle
FALSE : cacher la barre de softkeys des cycles après avoir défini le cycle
Message de demande de confirmation avec Effacer bloc
TRUE : afficher le message d'interrogation lors de l'effacement d'une séquence
FALSE : ne pas afficher le message d'interrogation lors de l'effacement d'une séquence
Longueur de programme sur laquelle la géométrie doit être vérifiée
100 à 9999 : longueur de programme sur laquelle la géométrie doit être vérifiée
Indication du chemin d'accès pour utilisateur final
Liste avec lecteurs et/ou répertoires
La TNC affiche dans le gestionnaire de fichiers les lecteurs et répertoires qui sont enregistrés ici
Temps universel (Greenwich Time)
Décalage horaire avec le temps universel (h)
-12 à 13 : décalage horaire par rapport à l'heure de Greenwich
HEIDENHAIN TNC 320
467
16.1 Paramètres utilisateur spécifiques de la machine
Configuration des paramètres
16.2 Repérage des broches et câbles pour les interfaces de données
16.2 Repérage des broches et câbles
pour les interfaces de données
Interface V.24/RS-232-C, appareils HEIDENHAIN
L’interface est conforme à la norme EN 50 178 Isolation
électrique du réseau.
Avec utilisation du bloc adaptateur 25 broches :
mâle
1
Affectation
ne pas
raccorder
femelle
1
couleur
femelle
1
Bloc adaptateur
VB 274 545-xx
310 085-01
mâle femelle mâle
couleur
1
1
1
blanc/brun
2
RXD
2
jaune
3
3
TNC
VB 365 725-xx
3
3
femelle
1
jaune
2
3
TXD
3
vert
2
2
2
2
vert
3
4
DTR
4
brun
20
20
20
20
brun
8
5
Signal GND
5
rouge
7
7
7
7
rouge
7
6
DSR
6
bleu
6
6
6
6
7
RTS
7
gris
4
4
4
4
gris
5
8
CTR
8
rose
5
5
5
5
rose
4
9
ne pas
connecter
9
8
violet
20
boîtier
Blindage
externe
boîtier
boîtier
blindage extérieur boîtier
blindage
extérieur
6
boîtier
boîtier boîtier
femelle
1
Avec utilisation du bloc adaptateur 9 broches :
mâle
1
Affectation
ne pas
connecter
femelle
1
couleur
rouge
mâle
1
Bloc adaptateur
VB 366 964-xx
363 987-02
femelle mâle femelle couleur
1
1
1
rouge
2
RXD
2
jaune
2
2
2
2
jaune
3
3
TXD
3
blanc
3
3
3
3
blanc
2
4
DTR
4
brun
4
4
4
4
brun
6
5
signal GND
5
noir
5
5
5
5
noir
5
6
DSR
6
violet
6
6
6
6
violet
4
7
RTS
7
gris
7
7
7
7
gris
8
8
CTR
8
blanc/vert
8
8
8
8
blanc/vert
7
9
ne pas
connecter
9
vert
9
9
9
9
vert
9
boîtier
blindage
extérieur
boîtier
blindage
extérieur
boîtier
boîtier
boîtier boîtier
TNC
468
VB 355 484-xx
blindage extérieur boîtier
Tableaux et récapitulatifs
16.2 Repérage des broches et câbles pour les interfaces de données
Appareils autres que HEIDENHAIN
Le repérage des broches d'un appareil d'une marque étrangère peut
être différent de celui d'un appareil HEIDENHAIN.
Il dépend de l'appareil et du type de transmission. Utilisez le repérage
des broches du bloc adaptateur du tableau ci-dessous.
Bloc adapt. 363 987-02
femelle
mâle
1
1
VB 366 964-xx
femelle
couleur
1
rouge
femelle
1
2
2
2
jaune
3
3
3
3
blanc
2
4
4
4
brun
6
5
5
5
noir
5
6
6
6
violet
4
7
7
7
gris
8
8
8
8
blanc/vert
7
9
9
9
vert
9
boîtier
boîtier
boîtier
blindage
externe
boîtier
Prise femelle RJ45 pour Interface Ethernet
Longueur de câble max. :
„ non blindé : 100 m
„ blindé : 400 m
broche
Signal
Description
1
TX+
Transmit Data
2
TX–
Transmit Data
3
REC+
Receive Data
4
libre
5
libre
6
REC–
7
libre
8
libre
HEIDENHAIN TNC 320
Receive Data
469
16.3 Informations techniques
16.3 Informations techniques
Signification des symboles
„ Standard
‡Option d'axe
‹Option de logiciel 1s
Fonctions utilisateur
Description succincte
„ Version de base : 3 axes plus broche asservie
‡1. axe auxiliaire pour 4 axes plus broche asservie
‡2. axe auxiliaire pour 5 axes plus broche asservie
Introduction des programmes
en dialogue conversationnel Texte clair HEIDENHAIN et selon DIN/ISO via softkeys ou
clavier USB
Données de positions
„ Positions nominales pour droites et cercles en coordonnées cartésiennes ou polaires
„ Cotation en absolu ou en incrémental
„ Affichage et introduction en mm ou en pouces
Corrections d'outils
„ Rayon d'outil dans le plan d'usinage et longueur d'outil
„ Calcul anticipé du contour (jusqu'à 99 séquences) avec correction de rayon (M120)
Tableaux d'outils
Plusieurs tableaux d'outils avec nombre d'outils au choix
Vitesse de contournage
constante
„ se référant à la trajectoire du centre de l'outil
„ se référant au tranchant de l'outil
Fonctionnement parallèle
Création d'un programme avec aide graphique pendant l'exécution d'un autre
programme
Eléments du contour
„ Droite
„ Chanfrein
„ Trajectoire circulaire
„ Centre de cercle
„ Rayon du cercle
„ Trajectoire circulaire avec raccordement tangentiel
„ Arrondi d'angle
Approche et sortie du contour
„ sur une droite : tangentielle ou perpendiculaire
„ sur un cercle
Programmation flexible des
contours FK
„ Programmation flexible de contours FK en conversationnel HEIDENHAIN avec aide
graphique pour pièces dont la cotation n'est pas orientée CN
Sauts dans le programme
„ Sous-programmes
„ Répétition de parties de programme
„ Programme quelconque pris comme sous-programme
470
Tableaux et récapitulatifs
Cycles d'usinage
„ Cycles de perçage, taraudage avec ou sans mandrin de compensation
„ Ebauche de poche rectangulaire ou circulaire
„ Cycles de perçage pour perçage profond, alésage à l'alésoir/à l'outil et lamage
„ Cycles de fraisage de filets intérieurs ou extérieurs
„ Finition de poche rectangulaire ou circulaire
„ Cycles d'usinage ligne à ligne de surfaces planes ou gauches
„ Cycles de fraisage de rainures droites ou circulaires
„ Motifs de points sur un cercle ou sur une grille
„ Poche de contour, parallèle au contour
„ Tracé de contour
„ En plus, des cycles constructeurs – spécialement développés par le constructeur de la
machine – peuvent être intégrés
Conversion de coordonnées
„ Décalage du point zéro, rotation, image miroir
„ Facteur échelle (spécifique à un axe)
‹Inclinaison du plan d'usinage (option de logiciel)
Paramètres Q
Programmation à l'aide de
variables
„ Fonctions arithmétiques =, +, –, *, /, sin α , cos α, racine d'un nombre
„ Opérations logiques (=, =/ , <, >)
„ Calcul entre parenthèses
„ tan α , arc sinus, arc cosinus, arc tangente, an, en, ln, log, valeur absolue, constante π
, inversion de signe, valeur entière, valeur décimale.
„ Fonctions de calcul d'un cercle
„ Paramètres string
Aides à la programmation
„ Calculatrice
„ Liste complète de tous les messages d'erreur en instance
„ Fonction d'aide contextuelle pour les messages d'erreur
„ Aide graphique lors de la programmation des cycles
„ Séquences de commentaires dans le programme CN
Teach In
„ Les positions effectives sont transférées directement dans le programme CN
Graphique de test
Modes de représentation
„ Simulation graphique de l'usinage, y compris si un autre programme est en cours
d'exécution
„ Vue de dessus / représentation dans 3 plans / représentation 3D
„ Agrandissement d'un détail
Graphique de programmation
„ Dans le mode de fonctionnement Programmation, les séquences CN introduites sont
dessinées en même temps (graphique filaire 2D), y compris si un autre programme
est en cours d'exécution
Graphique d'usinage
Modes de représentation
„ Représentation graphique du programme exécuté en vue de dessus / avec
représentation dans 3 plans / représentation 3D
Temps d'usinage
„ Calcul du temps d'usinage en mode ”Test de programme”
„ Affichage du temps d'usinage actuel dans les modes exécution du programme
HEIDENHAIN TNC 320
471
16.3 Informations techniques
Fonctions utilisateur
16.3 Informations techniques
Fonctions utilisateur
Réaccoster le contour
„ Amorce de séquence à n'importe quelle séquence du programme et approche de la
position nominale pour poursuivre l'usinage
„ Interruption du programme, sortie du contour et réaccostage du contour
Tableaux de points zéro
„ Plusieurs tableaux de points zéro pour la mémorisation des points zéro pièce
Cycles palpeurs
„ Etalonnage du palpeur
„ Compensation manuelle ou automatique du désaxage de la pièce
„ Initialisation manuelle ou automatique du point d'origine
„ Mesure automatique des pièces
„ Cycles d'étalonnage automatique des outils
Caractéristiques techniques
Composants
„ Calculateur principal avec panneau de commande TNC et écran couleurs plat TFT 15,1
pouces avec softkeys
Mémoire de programmes
„ 300 Mo (sur carte-mémoire Compact Flash CFR)
Finesse d'introduction et
résolution d'affichage
„ jusqu'à 0,1 µm sur les axes linéaires
„ jusqu'à 0,000 1° sur les axes angulaires
Plage d'introduction
„ 999 999 999 mm ou 999 999 999° max.
Interpolation
„ Droite sur 4 axes
„ Cercle sur 2 axes
‹Cercle sur 3 axes avec inclinaison du plan d'usinage (option de logiciel 1)
„ Trajectoire hélicoïdale : superposition de trajectoire circulaire et de droite
Durée de traitement des
séquences
Droite 3D sans correction rayon
„ 6 ms (droite 3D sans correction de rayon)
Asservissement des axes
„ Finesse d'asservissement de position : période de signal du système de mesure de
position/1024
„ Durée de cycle pour l'asservissement de position : 3 ms
„ Durée de cycle pour l’asservissement de vitesse : 600 µs
Course de déplacement
„ 100 m max. (3 937 pouces)
Vitesse de rotation broche
„ Max 100 000 tours/min. (consigne de vitesse analogique)
Compensation des défauts
„ Compensation linéaire et non-linéaire des défauts d'axes, jeu, pointes à l'inversion sur
trajectoires circulaires, dilatation thermique
„ Gommage de glissière
472
Tableaux et récapitulatifs
Interfaces de données
„ V.24 / RS-232-C, 115 kbauds max.
„ Interface de données étendue avec protocole LSV-2 pour commande à distance de la
TNC via l'interface de données avec logiciel HEIDENHAIN TNCremo
„ Interface Ethernet 100 Base T
env. 2 à 5 Mbauds (dépend du type de fichiers et de la charge du réseau)
Température ambiante
„ de service : 0°C à +45°C
„ de stockage : -30°C à +70°C
Accessoires
Manivelles électroniques
„ une HR 410 : manivelle portable ou
„ une HR 130 : manivelle encastrable ou
„ jusqu’à trois HR 150 manivelles encastrables via l'adaptateur HRA110
Systèmes de palpage
„ TS 220 : palpeur 3D à commutation avec raccordement par câble ou
„ TS 440 : palpeur 3D à commutation avec transmission infrarouge
„ TS 444 : palpeur 3D à commutation avec transmission infrarouge, sans piles
„ TS 640 : palpeur 3D à commutation avec transmission infrarouge
„ TS 740 : palpeur 3D à commutation avec transmission infrarouge, de haute précision
„ TT 140 : palpeur 3D à commutation pour l'étalonnage d'outils
Option de logiciel 1 (numéro d'option #08)
Usinage avec plateau
circulaire
‹Programmation de contours sur le développé d'un cylindre
‹Avance en mm/min.
Conversions de coordonnées
‹Inclinaison du plan d'usinage
Interpolation
‹Cercle sur 3 axes avec inclinaison du plan d'usinage
HEIDENHAIN TNC 320
473
16.3 Informations techniques
Caractéristiques techniques
16.3 Informations techniques
Formats d'introduction et unités des fonctions TNC
Positions, coordonnées, rayons de cercles,
longueurs de chanfreins
-99 999.9999 à +99 999.9999
(5,4 : chiffres avant la virgule, chiffres après la virgule) [mm]
Numéros d'outils
0 à 32 767,9 (5,1)
Noms d'outils
16 caractères, écrits entre ““ avec TOOL CALL. Caractères autorisés : #,
$, %, &, -
Valeurs Delta des corrections d'outils
-99,9999 à +99,9999 (2,4) [mm]
Vitesses de rotation broche
0 à 99 999,999 (5.3) [tours/min.]
Avances
0 à 99 999,999 (5,3) [mm/min.] ou [mm/dent] ou [mm/tour]
Temporisation dans le cycle 9
0 à 3 600,000 (4,3) [s]
Pas de vis dans divers cycles
-99,9999 à +99,9999 (2,4) [mm]
Angle pour orientation de la broche
0 à 360,0000 (3,4) [°]
Angle des coordonnées polaires, rotation,
inclinaison du plan d'usinage
-360,0000 à 360,0000 (3,4) [°]
Angle des coordonnées polaires pour
l'interpolation hélicoïdale (CP)
-5 400,0000 à 5 400,0000 (4,4) [°]
Numéros de points zéro dans le cycle 7
0 à 2 999 (4,0)
Facteur échelle dans les cycles 11 et 26
0,000001 à 99,999999 (2,6)
Fonctions auxiliaires M
0 à 999 (3,0)
Numéros de paramètres Q
0 à 1999 (4,0)
Valeurs des paramètres Q
-99 999,9999 à +99 999,9999 (5,4)
Vecteurs normaux N et T lors de la correction
3D
-9,99999999 à +9,99999999 (1,8)
Marques (LBL) pour sauts de programmes
0 à 999 (3,0)
Marques (LBL) pour sauts de programmes
N'importe quelle chaîne de texte entre guillemets (““)
Nombre de répétitions de parties de
programme REP
1 à 65 534 (5,0)
Numéro d'erreur avec la fonction des
paramètres Q FN14
0 à 1 099 (4,0)
474
Tableaux et récapitulatifs
16.4 Changement de la pile tampon
16.4 Changement de la pile tampon
Lorsque la commande est hors tension, une pile tampon alimente la
TNC en courant pour que les données de la mémoire RAM ne soient
pas perdues.
Lorsque la TNC affiche le message Changer batterie tampon, vous
devez alors changer la batterie.
Avant de changer la pile tampon, exécutez une
sauvegarde des données!
Pour changer la pile tampon, mettre la machine et la TNC
hors tension!
1
La pile tampon ne doit être changée que par un personnel
dûment formé!
Type de batterie : 1 pile au lithium type CR 2450N (Renata)
ID 315 878-01
1
2
3
4
5
La pile se trouve sur la platine principale du MC 6110
Enlever les cinq vis du capot du MC 6110
Retirer le capot
La pile tampon est située sur la face latérale de la platine
Changer la pile : la nouvelle pile ne peut être que bien positionnée
HEIDENHAIN TNC 320
475
476
Tableaux et récapitulatifs
16.4 Changement de la pile tampon
Tableaux récapitulatifs
Cycles d'usinage
Numéro
cycle
Désignation du cycle
Actif
DEF
7
Décalage du point zéro
„
8
Image miroir
„
9
Temporisation
„
10
Rotation
„
11
Fact. éch.
„
12
Appel de programme
„
13
Orientation broche
„
14
Définition du contour
„
19
Inclinaison du plan d'usinage
„
20
Données de contour SL II
„
21
Pré-perçage SL II
„
22
Evidement SL II
„
23
Finition en profondeur SL II
„
24
Finition latérale SL II
„
25
Tracé de contour
„
26
Facteur échelle spécifique de l'axe
27
Corps d'un cylindre
„
28
Rainurage sur le corps d'un cylindre
„
29
Corps d'un cylindre, oblong convexe
„
32
Tolérance
200
Perçage
„
201
Alésage à l'alésoir
„
202
Alésage à l'outil
„
203
Perçage universel
„
204
Lamage en tirant
„
205
Perçage profond universel
„
HEIDENHAIN TNC 320
Actif
CALL
„
„
477
Numéro
cycle
Désignation du cycle
206
Taraudage avec mandrin de compensation, nouveau
„
207
Nouveau taraudage rigide
„
208
Fraisage de trous
„
209
Taraudage avec brise-copeaux
„
220
Motifs de points sur un cercle
„
221
Motifs de points sur grille
„
230
Fraisage ligne à ligne
„
231
Surface réglée
„
232
Surfaçage
„
240
Centrage
„
241
Perçage monolèvre
„
247
Initialisation du point d'origine
251
Poche rectangulaire, usinage intégral
„
252
Poche circulaire, usinage intégral
„
253
Fraisage de rainures
„
254
Rainure circulaire
„
256
Tenon rectangulaire, usinage intégral
„
257
Tenon circulaire, usinage intégral
„
262
Fraisage de filets
„
263
Filetage sur un tour
„
264
Filetage avec perçage
„
265
Filetage hélicoïdal avec perçage
„
267
Filetage externe sur tenons
„
478
Actif
DEF
Actif
CALL
„
Fonctions auxiliaires
M
Effet
M0
ARRET de déroulement du programme/ARRET broche/ARRET arrosage
„
Page 307
M1
ARRET de déroulement du programme/ARRET broche/ARRET arrosage
„
Page 438
M2
ARRÊT de déroulement du programme/ARRÊT broche/ARRÊT
arrosage/éventuellement effacement de l'affichage d'état
(dépend des paramètres machine)/retour à la séquence 1
„
Page 307
M3
M4
M5
MARCHE broche sens horaire
MARCHE broche sens anti-horaire
ARRET broche
M6
Changement d'outil/ARRET programme (dépend des paramètres machine/ARRET
broche
M8
M9
MARCHE arrosage
ARRET arrosage
„
M13
M14
MARCHE broche sens horaire/MARCHE arrosage
MARCHE broche sens anti-horaire/MARCHE arrosage
„
„
M30
Même fonction que M2
M89
Fonction auxiliaire libre ou
appel de cycle, effet modal (en fonction des paramètres-machine)
„
M91
Dans la séquence de positionnement : les coordonnées se réfèrent au point zéro
machine
„
Page 308
M92
Dans la séquence de positionnement : les coordonnées se réfèrent à une position
définie par le constructeur, p.ex. position de changement d'outil
„
Page 308
M94
Réduction de l'affichage de position de l'axe rotatif à une valeur inférieure à 360°
„
Page 366
M97
Usinage de petits éléments de contour
„
Page 311
M98
Usinage intégral de contours ouverts
„
Page 313
M99
Appel de cycle pas à pas
„
Manuel
utilisateur
des cycles
HEIDENHAIN TNC 320
Action sur séquence au début à la fin Page
„
„
Page 307
„
„
Page 307
Page 307
„
Page 307
„
Page 307
„
Manuel
utilisateur
des cycles
479
M
Effet
M101
Changement d'outil automatique par un outil jumeau si la durée d'utilisation est
atteinte
Annulation de M101
M102
Action sur séquence au début à la fin Page
„
Page 150
„
„
M111
Vitesse de contournage constante au tranchant de l'outil
(augmentation et réduction de l'avance)
Vitesse de contournage constante au tranchant de l'outil
(réduction d'avance seulement)
Annulation de M109/M110
M116
M117
Avance sur les axes rotatifs en mm/min.
Annulation de M116
„
M118
Superposition du positionnement avec manivelle pendant l'exécution du programme „
Page 318
M120
Calcul anticipé du contour avec correction de rayon (LOOK AHEAD)
„
Page 316
M126
M127
Déplacement des axes rotatifs avec optimisation de course
Annulation de M126
„
M130
Dans la séquence de positionnement : les points se réfèrent au système de
coordonnées non incliné
„
Page 310
M140
Retrait du contour dans le sens de l'axe d'outil
„
Page 319
M144
Page 368
M145
Prise en compte de la cinématique de la machine dans les positions EFF/NOM en fin „
de séquence
Annulation de M144
M141
Annuler la surveillance du palpeur
„
M148
M149
Lors d'un stop CN, dégager l'outil automatiquement du contour
Annulation de M148
„
M109
M110
480
Page 315
„
„
Page 364
„
Page 365
„
„
Page 320
Page 321
„
Comparatif des fonctions de la
TNC 320 et de la iTNC 530
Comparatif : caractéristiques techniques
Fonction
TNC 320
iTNC 530
Axes
5 au maximum
18 au maximum
„ Axes linéaires
„ 1µm
„ 0,1 µm
„ Axes rotatifs
„ 0,001°
„ 0,0001°
Affichage
Ecran plat couleur TFT
15,1 pouces
Ecran plat couleur TFT
15,1 pouces, en option 19
pouces TFT
Support d’enregistrement pour programmes CN et PLC, et fichierssystème
Carte mémoire Compact
Flash
Disque dur
Mémoire de programmes pour programmes CN
300 Mo
25 Go
Durée de traitement des séquences
6 ms
3,6 ms (MC 420)
0,5 ms (MC 422 C)
Système d'exploitation HeROS
Oui
Oui
Système d'exploitation Windows XP
Non
Option
„ Droite
„ 4 axes
„ 5 axes
„ Cercle
„ 3 axes
„ 3 axes
„ Hélice
„ Oui
„ Oui
„ Spline
„ Non
„ Oui, option pour
MC 420
Matériel
Compact dans le pupitre
Modulaire dans l'armoire
électrique
Fonction
TNC 320
iTNC 530
Fast-Ethernet 100BaseT
X
X
Interface série RS-232-C
X
X
Interface série RS-422
-
X
Interface USB
X (USB 2.0)
X (USB 1.1)
Finesse d'introduction et résolution :
Interpolation :
Comparatif : interfaces des données
HEIDENHAIN TNC 320
481
Comparatif : accessoires
Fonction
TNC 320
iTNC 530
„ MB 420
„–
„X
„ MB 620 (HSCI)
„X
„X
„ HR 410
„X
„X
„ HR 420
„–
„X
„ HR 520/530/550
„–
„X
„ HR 130
„X
„X
„ HR 150 via HRA 110
„X
„X
„ TS 220
„X
„X
„ TS 440
„X
„X
„ TS 444
„X
„X
„ TS 449 / TT 449
„–
„X
„ TS 640
„X
„X
„ TS 740
„X
„X
„ TT 130 / TT 140
„X
„X
PC industriel IPC 61xx
–
X
Pupitre de commande machine
Manivelles électroniques
Systèmes de palpage
482
Comparatif : logiciels pour PC
Fonction
TNC 320
iTNC 530
Logiciel du poste de programmation
Disponible
Disponible
TNCremoNT pour la transmission des
données avecTNCbackup destiné à la
sauvegarde des données
Disponible
Disponible
TNCremoPlus, logiciel de transfert des
données avec Live Screen
Disponible
Disponible
RemoTools SDK 1.2 : bibliothèque de
fonctions pour le développement
d'applications personnalisées pour
communiquer avec les commandes
HEIDENHAIN
Disponibilité limitée
Disponible
virtualTNC : composants de la
commande pour machine virtuelle
Non disponible
Disponible
ConfigDesign : logiciel de configuration
de la commande
Disponible
Non disponible
Comparatif : fonctions spécifiques à la machine
Fonction
TNC 320
iTNC 530
Commutation de zone de déplacement
Fonction non disponible
Fonction disponible
Motorisation centrale (1 moteur pour
plusieurs axes machine)
Fonction non disponible
Fonction disponible
Mode axe C (moteur de broche
commande l'axe rotatif)
Fonction non disponible
Fonction disponible
Changement automatique de tête de
fraisage
Fonction non disponible
Fonction disponible
Gestion des têtes à renvoi d'angle
Fonction non disponible
Fonction disponible
Identification d'outils Balluf
Fonction non disponible
Fonction disponible
Gestion de plusieurs magasins d'outils
Fonction non disponible
Fonction disponible
Gestion d'outils avancée avec Python
Fonction non disponible
Fonction disponible
HEIDENHAIN TNC 320
483
Comparatif : fonctions utilisateur
Fonction
TNC 320
iTNC 530
„ En dialogue conversationnel HEIDENHAIN
„X
„X
„ En DIN/ISO
„ X (Softkeys)
„ X (touches ASCII)
„ Avec smarT.NC
„–
„X
„ Avec éditeur ASCII
„ X, éditable directement „ X, éditable après
conversion
Introduction des programmes
Données de positions
„ Position nominale pour droite et cercle en coordonnées
cartésiennes
„X
„X
„ Position nominale pour droite et cercle en coordonnées polaires
„X
„X
„ Cotation en absolu ou en incrémental
„X
„X
„ Affichage et introduction en mm ou en pouces
„X
„X
„ Séquences de déplacement paraxial
„X
„X
„ Définir la dernière position en tant que pôle (séquence CC vide)
„ X (message d'erreur
quand la prise en
compte du pôle est
incertaine)
„X
„ Vecteur normal à la surface (LN)
„–
„X
„ Séquences spline SPL
„–
„X
„ Dans le plan d’usinage et longueur d’outil
„X
„X
„ Calcul anticipé du contour jusqu'à 99 séquences avec correction de
rayon
„X
„X
„ Correction de rayon d'outil tridimensionnelle
„–
„X
„ Mémorisation centralisée des données d'outils
„ X, numérotation
variable
„ X, numérotation fixe
„ Plusieurs tableaux d'outils avec nombre d'outils au choix
„X
„X
„ Gestion souple des types d'outil
„X
„–
„ Outils avec sélection filtrée de l'affichage
„X
„–
„ Fonction de tri
„X
„–
„ Nom de colonne?
„ En partie avec _
„ En partie avec _
„ Fonction de copie : écrasement ciblé de données d'outils
„–
„X
„ Formulaire de présentation
„ Commutation par
touche du partage de
l'écran
„ Commutation par
softkey
„ Echange des tableaux d'outils entre la TNC 320 et la iTNC 530
„ Impossible
„ Impossible
Tableau de systèmes de palpage pour la gestion des divers palpeurs
3D
X
–
Correction d'outil
Tableau d'outils
484
Fonction
TNC 320
iTNC 530
Créer un fichier d'utilisation des outils, vérifier la disponibilité
–
X
Tableaux de données de coupe : calcul automatique de la vitesse de
rotation broche et de l’avance en fonction des tableaux
technologiques
–
X
„ avec les données de
configuration
„ Tableaux à définition
libre (extension .TAB)
„ Les noms de tableaux
doivent commencer
par une lettre
„ Lecture et écriture au
moyen des fonctions
FN
Définition de tableaux divers
„ Lecture et écriture au
moyen des fonctions
SQL
Vitesse de contournage constante se référant à la trajectoire du
centre de l’outil ou du tranchant de l’outil
X
X
Fonctionnement parallèle : création d’un programme pendant
l’exécution d’un autre programme
X
X
Programmation des axes de comptage
–
X
Inclinaison du plan d'usinage (cycle 19, fonction PLANE)
Option #08
Oui, option #08 avec
MC 420
Usinage avec plateau circulaire :
„ Programmation de contours sur le développé d'un cylindre
„
„
„ Corps de cylindre (cycle 27)
„ X option #08
„ X, option #08 avec MC420
„ Corps de cylindre, rainure (cycle 28)
„ X option #08
„ X, option #08 avec MC420
„ Corps de cylindre, oblong (cycle 29)
„ X, option #08
„ X, option #08 avec MC420
„–
„ X, option #08 avec MC420
„ Corps d'un cylindre, contour externe (cycle 39)
„ Avance en mm/min. ou pouces/min.
„ X option #08
„ X, option #08 avec MC420
„ Mode Manuel (menu 3D-ROT)
„–
„ X, fonction FCL2
„ Pendant une interruption de programme
„–
„X
„ Superposition de la manivelle
„–
„ X, option #44
Approche et sortie du contour sur une droite ou sur un cercle
X
X
„ F (mm/min), rapide FMAX
„X
„X
„ FU: avance par tour (mm/tour)
„X
„X
„ FZ (avance par dent)
„X
„X
„ FT (temps en secondes pour le déplacement)
„–
„X
„ FMAXT (avec le potentiomètre d'avance actif : temps en secondes
pour le déplacement)
„–
„X
Déplacement dans la direction de l'axe d'outil
Introduction d'avance :
HEIDENHAIN TNC 320
485
Fonction
TNC 320
iTNC 530
„ Programmation des pièces avec une cotation non orientée CN
„X
„X
„ Conversion de programme FK en dialogue Texte clair
„–
„X
„ Nombre max de numéros de label
„ 65535
„ 1000
„ Sous-programmes
„X
„X
Programmation flexible des contours FK
Sauts de programme :
„ Niveau d'imbrication des sous-programmes
„ 20
„6
„ Répétitions de parties de programme
„X
„X
„ Programme quelconque comme sous-programme
„X
„X
„ Fonctions standard mathématiques
„X
„X
„ Introduction formule
„X
„X
„ Traitement de chaîne de caractères
„X
„X
„ Paramètres locaux QL
„–
„X
„ Paramètres rémanents QR
„–
„X
„ Modifier les paramètres lors de l'interruption de programme
„–
„X
„ FN15 : PRINT
„–
„X
„ FN25 : PRESET
„–
„X
Programmation des paramètres Q :
„ FN26 : TABOPEN
„–
„X
„ FN27 : TABWRITE
„–
„X
„ FN28 : TABREAD
„–
„X
„ FN29 : PLC LIST
„X
„–
„ FN31 : RANGE SELECT
„–
„X
„ FN32 : PLC PRESET
„–
„X
„ FN37 : EXPORT
„X
„–
„ FN38 : SEND
„–
„X
„ Mémoriser les fichiers en externe avec FN16
„–
„X
„ Formatage FN16 : alignement à gauche, alignement à droite,
longueur de chaîne de caractères
„–
„X
„ FN16: Comportement standard lors de l'écriture d'un fichier quand il
n'est pas défini explicitement avec APPEND ou M_CLOSE
„ Le protocole est écrasé
avec chaque appel
„ Les données sont
ajoutées au fichier
présent à chaque appel
„ Ecrire dans le fichier LOG avec FN16
„X
„–
„ Afficher le contenu des paramètres dans l'affichage d'état auxiliaire „ X
„–
„ Afficher le contenu des paramètres lors de la programmation (QINFO)
„–
„X
„ Fonctions SQL pour la lecture et l'écriture de tableaux
„X
„–
486
Fonction
TNC 320
iTNC 530
„X
„X
Aide graphique
„ Graphique de programmation 2D
„ Synchronisation affichage de la séquence/graphique
„–
„X
„ Fonctions REDESSINER
„–
„X
„ Afficher une grille en arrière plan
„X
„–
„ Graphique de programmation 3D
„–
„X
„ Graphique de test : Vue de dessus / représentation dans 3 plans /
représentation 3D
„X
„X
„ Affichage haute résolution
„–
„X
„ Construction de l'image
„ Par bloc
„ en continu
„ Afficher l'outil
„ Seulement en vue de
dessus
„X
„ Réglage de la vitesse de simulation
„–
„X
„ Coordonnées des plans de coupe dans 3 plans
„–
„X
„ Fonctions zoom étendues (fonction souris)
„–
„X
„ Affichage du cadre du brut
„X
„X
„ Représentation des profondeurs pour la vue de dessus lors de
l'évènement Mouseover
„–
„X
„ Arrêt précis du test de programme (STOP A)
„–
„X
„ Tenir compte de la macro de changement d'outil
„ Graphique de test (vue de dessus / représentation dans 3 plans /
représentation 3D)
„–
„X
„ Affichage haute résolution
„X
„X
„–
„X
„ Mémoriser/ouvrir les résultats de la simulation
„X
„–
Tableaux de points zéro : mémorisation des points zéro pièce
X
X
Tableau Preset : Gestion des points d'origine
X
X
„ Aide aux fichiers de palettes
„–
„X
„ Usinage orienté outil
„–
„X
„ Tableau palettes : gestion des points d'origine des palettes
„–
„X
„ Avec amorce de séquence
„X
„X
„ Après interruption de programme
„X
„X
Fonction Autostart
X
X
Teach-In : transférer les positions effectives dans un programme CN X
X
Gestion de palettes
Réaccostage du contour
HEIDENHAIN TNC 320
487
Fonction
TNC 320
iTNC 530
„ Définir plusieurs répertoires et sous-répertoires
„X
„X
„ Fonction de tri
„X
„X
„ Fonction souris
„X
„X
„ Sélectionner le répertoire cible à l'aide de softkey
„–
„X
„ Figures d'aide pour la programmation des cycles
„ X, commutable avec
donnée de
configuration
„X
„ Figures d'aide animées pour les fonctions PLANE/PATTERN DEF
„–
„X
„ Figures d'aide pour PLANE/PATTERN DEF
„–
„X
„ Aide contextuelle pour les messages d'erreur
„X
„X
„ TNCguide, le système d'aide contextuelle avec navigateur
„X
„X
„ Appel contextuel du système d'aide
„–
„X
„ Calculatrice
„ X (scientifique)
„ X (Standard)
„ Séquences de commentaires dans le programme CN
„ X (Saisie au moyen du
clavier virtuel)
„ X (Saisie au moyen du
clavier ASCII)
„ Séquences d’articulation dans le programme CN
„ X (Saisie au moyen du
clavier virtuel)
„ X (Saisie au moyen du
clavier ASCII)
Gestion étendue des fichiers :
Aides à la programmation :
„ Vue des articulations en test de programme
„–
„X
„ Vue des articulations pour des programmes longs
„–
„X
Contrôle dynamique anti-collision DCM :
„ Contrôle anti-collision en mode Automatique
„–
„ X, Option #40
„ Contrôle anti-collision en mode Manuel
„–
„ X, Option #40
„ Représentation graphique des éléments de collision définis
„–
„ X, Option #40
„ Contrôle de collision en test de programme
„–
„ X, Option #40
„ Surveillance des dispositifs de fixation
„–
„ X, Option #40
„ Gestion des porte-outils
„–
„ X, Option #40
„ Prise en compte des contours de fichiers DXF
„–
„ X, Option #42
„ Prise en compte des positions d'usinage de fichiers DXF
„–
„ X, Option #42
„ Filtre hors ligne pour fichiers FAO
„–
„X
„ Filtre Strech
„x
„–
Interface FAO :
488
Fonction
TNC 320
iTNC 530
„ Paramètres utilisateur
„ Données config.
„ Structuré par numéros
„ Fichiers d'aide OEM avec fonctions de maintenance
„–
„X
„ Contrôle de support de données
„–
„X
„ Chargement de service-packs
„–
„X
„ Configuration de l'horloge du système
„–
„X
„ Définir les axes pour le transfert de la position courante
„–
„X
„ Définir les limites de déplacement
„–
„X
„ Verrouiller l'accès externe
„–
„X
„ Commuter la cinématique
„–
„X
„ Mit M99 ou M89
„X
„X
„ Avec CYCL CALL
„X
„X
„ Avec CYCL CALL PAT
„X
„X
„ Avec CYCL CALL POS
„–
„X
„ Créer un programme-inverse
„–
„X
„ Décalage de point zéro avec TRANS DATUM
„–
„X
Fonctions MOD :
Appel de cycles d'usinage :
Fonctions spéciales :
„ Asservissement adaptatif de l'avance AFC
„–
„ X, Option #45
„ Définir un paramètre de cycle global : GLOBAL DEF
„–
„X
„ Définition des motifs avec PATTERN DEF
„X
„X
„ Définition et exécution de tableaux de points
„X
„X
„ Formule simple de contour CONTOUR DEF
„X
„X
„ Configurations globales de programme GS
„–
„ X, option #44
„ Fonction étendue M128 : FUNCTIOM TCPM
„–
„X
„ Positions, vitesse de rotation broche, avance
„X
„X
„ Affichage de positions agrandie, mode Manuel
„–
„X
„ Affichage d'état auxiliaire, sous forme de formulaire
„X
„X
„ Affichage de la course de la manivelle lors de l'usinage avec
superposition de la manivelle
„–
„X
„ Chemin restant à parcourir dans un système de coordonnées
incliné.
„–
„X
„ Affichage dynamique du contenu des paramètres Q, identificateur
définissable
„X
„–
„ Affichage d'état OEM auxiliaire via Python
„–
„X
„ Affichage graphique du temps restant
„–
„X
Réglage individuel des couleurs de l'interface utilisateur
–
X
Fonctions pour moulistes :
Affichages d'état :
HEIDENHAIN TNC 320
489
Comparatif : Cycles
Cycle
TNC 320
iTNC 530
1, Perçage profond
X
X
2, Taraudage
X
X
3, Rainurage
X
X
4, Fraisage de poche
X
X
5, Poche circulaire
X
X
6, Evidement (SL I)
–
X
7, Décalage du point zéro
X
X
8, Image miroir
X
X
9, Temporisation
X
X
10, Rotation
X
X
11, Facteur échelle
X
X
12, Appel de programme
X
X
13, Orientation broche
X
X
14, Définition du contour
X
X
15, Préperçage (SLI)
–
X
16, Fraisage de contour (SLI)
–
X
17, Taraudage rigide GS
X
X
18, Filetage
X
X
19, Plan d’usinage
X option #08
X, Option #08 avec
MC420
20, Données du contour
X
X
21, Préperçage
X
X
22, Evidement :
X
X
„ Paramètres Q401, facteur d'avance
„–
„X
„ Paramètres Q404, stratégie d'évidement
„–
„X
23, Finition de profondeur
X
X
24, Finition latérale
X
X
25, Tracé de contour
X
X
26, Facteur échelle spécifique à un axe
X
X
490
Cycle
TNC 320
iTNC 530
27, Contour du cylindre
Option #08
X, Option #08 avec
MC420
28, Corps d’un cylindre
Option #08
X, Option #08 avec
MC420
29, Corps d'un cylindre, oblong convexe
Option #08
X, Option #08 avec
MC420
30, Exécution de données 3D
–
X
32, Tolérance
X
X
32, Tolérance en mode HSC et TA
–
X, Option #09 avec
MC420
39, Corps d'un cylindre, contour externe
–
X, Option #08 avec
MC420
200, Perçage
X
X
201, Alésage à l’alésoir
X
X
202, Alésage à l’outil
X
X
203, Perçage universel
X
X
204, Lamage en tirant
X
X
205, Perçage profond universel
X
X
206, Nouv. tar. avec m. de comp.
X
X
207, Nouv. tar. rigide
X
X
208, Fraisage de trous
X
X
209, Tar. avec brise-cop.
X
X
210, Rainure pendulaire
X
X
211, Rainure circulaire
X
X
212, Finition de poche rectangulaire
X
X
213, Finition de tenon rectangulaire
X
X
214, Finition de poche circulaire
X
X
215, Finition de tenon circulaire
X
X
220, Motifs de points sur un cercle
X
X
221, Motifs de points sur grille
X
X
230, Usinage ligne à ligne
X
X
231, Surface réglée
X
X
HEIDENHAIN TNC 320
491
Cycle
TNC 320
iTNC 530
232, Surfaçage
X
X
240, Centrage
X
X
241, Perçage profond monolèvre
X
X
247, Initialisation du pt d'origine
X
X
251, Poche rectangulaire, usinage intégral
X
X
252, Poche circulaire, usinage intégral
X
X
253, Rainure, usinage intégral
X
X
254, Rainure circulaire, usinage intégral
X
X
256, Tenon rectangulaire, usinage intégral
X
X
257, Tenon circulaire, usinage intégral
X
X
262, Fraisage de filets
X
X
263, Filetage sur un tour
X
X
264, Filetage avec perçage
X
X
265, Filetage hélicoïdal avec perçage
X
X
267, Filetage externe sur tenons
X
X
270, Données de contour pour le réglage du comportement du cycle 25
–
X
492
Comparatif : fonctions auxiliaires
M
Effet
TNC 320
iTNC 530
M00
ARRET de déroulement du programme/ARRET broche/ARRET arrosage
X
X
M01
ARRET optionnel du programme
X
X
M02
ARRÊT de déroulement du programme/ARRÊT broche/ARRÊT
arrosage/éventuellement effacement de l'affichage d'état (dépend de
PM)/retour à la séquence 1
X
X
M03
M04
M05
MARCHE broche sens horaire
MARCHE broche sens anti-horaire
ARRET broche
X
X
M06
Changement d'outil/ARRÊT déroulement programme (fonction
machine)/ARRÊT broche
X
X
M08
M09
MARCHE arrosage
ARRET arrosage
X
X
M13
M14
MARCHE broche sens horaire/MARCHE arrosage
MARCHE broche sens anti-horaire/MARCHE arrosage
X
X
M30
Même fonction que M02
X
X
M89
Fonction auxiliaire libre ou
appel de cycle, effet modal (fonction machine)
X
X
M90
Vitesse de contournage constante aux angles
–
X
M91
Dans la séquence de positionnement : les coordonnées se réfèrent au
point zéro machine
X
X
M92
Dans la séquence de positionnement : les coordonnées se réfèrent à une X
position définie par le constructeur, p.ex. position de changement d'outil
X
M94
Réduction de l'affichage de position de l'axe rotatif à une valeur inférieure
à 360°
X
X
M97
Usinage de petits éléments de contour
X
X
M98
Usinage intégral de contours ouverts
X
X
M99
Appel de cycle non modal
X
X
M101
–
X
M102
Changement d'outil automatique par un outil jumeau si la durée
d'utilisation est atteinte
Annulation de M101
M103
Réduire l'avance de plongée du facteur F (en pourcent)
–
X
M104
Réactiver le dernier point d'origine initialisé
–
X
M105
M106
Exécuter l'usinage avec le deuxième facteur kv
Exécuter l'usinage avec le premier facteur kv
–
X
HEIDENHAIN TNC 320
493
M
Effet
TNC 320
iTNC 530
M107
M108
Inhiber le message d'erreur pour outils jumeaux avec surépaisseur
Annulation de M107
X
X
M109
Vitesse de contournage constante au tranchant de l'outil
(augmentation et réduction de l'avance)
Vitesse de contournage constante au tranchant de l'outil
(réduction d'avance seulement)
Annulation de M109/M110
X
X
Insérer des transitions de contour entre n'importe quelles transitions du
contour
Annulation de M112
–
X
–
X, Option #08 avec
MC420
M115
Correction automatique de la géométrie machine lors de l'usinage avec
axes inclinés
Annulation de M114
M116
M117
Avance pour plateaux circulaires en mm/min.
Annulation de M116
Option #08
X, Option #08 avec
MC420
M118
Superposition avec la manivelle pendant l'exécution du programme
X
X
M120
Calcul anticipé du contour avec correction de rayon (LOOK AHEAD)
X
X
M124
Filtre de contour
–
X
M126
M127
Déplacement des axes rotatifs avec optimisation de course
Annulation de M126
X
X
M128
Conserver position pointe d'outil lors du positionnement des axes inclinés
(TCPM)
Annulation de M126
–
X, Option #09 avec
MC420
M130
Séquence de positionnement : les points se réfèrent au système de
coordonnées non incliné
X
X
M134
–
X
M135
Arrêt précis aux transitions non tangentielles lors de positionnements
avec axes circulaires
Annulation de M134
M136
M137
Avance F en millimètres par tour de broche
Annulation de M136
–
X
M138
Sélection d'axes inclinés
–
X
M140
Retrait du contour dans le sens de l'axe d'outil
X
X
M141
Annuler la surveillance du palpeur
X
X
M142
Effacer les informations de programme modales
–
X
M143
Effacer la rotation de base
X
X
M144
Prise en compte de la cinématique de la machine dans les positions
NOM/EFF en fin de séquence
Annulation de M144
Option #08
X, Option #09 avec
MC420
M110
M111
M112
M113
M114
M129
M145
494
M
Effet
TNC 320
iTNC 530
M148
M149
Lors d'un stop CN, dégager l'outil automatiquement du contour
Annulation de M148
X
X
M150
Ne pas afficher le message de fin de course
–
X
M200M204
Fonctions de découpe au laser
–
X
HEIDENHAIN TNC 320
495
Comparatif : cycles palpeurs dans les modes
Manuel et Manivelle électronique
Cycle
TNC 320
iTNC 530
Tableau de systèmes de palpage pour la gestion des palpeurs 3D
X
–
Etalonnage de la longueur effective
X
X
Etalonnage du rayon effectif
X
X
Détermination de la rotation de base à partir d'une droite
X
X
Initialisation du point d'origine sur un axe au choix
X
X
Initialisation d'un coin comme point d'origine
X
X
Initialisation du centre de cercle comme point d'origine
X
X
Initialisation de l'axe central comme point d'origine
–
X
Détermination de la rotation de base à partir de deux trous/tenons circulaires
–
X
Initialisation du point d'origine à partir de quatre trous/tenons circulaires
–
X
Initialiser le centre de cercle à partir de trois trous/tenons circulaires
–
X
Aide à l'usage de palpeurs mécaniques par transfert manuel de la position
courante
Par softkey
Par touche du
clavier
Ecrire les valeurs dans le tableau preset
X
X
Ecrire les valeurs dans le tableau des points zéro
X
X
496
Comparatif : cycles palpeurs pour le contrôle
automatique des pièces
Cycle
TNC 320
iTNC 530
0, Plan d'origine
X
X
1, Point d'origine polaire
X
X
2, Etalonnage palpeur TS
–
X
3, Mesure
X
X
4, Mesure 3D
–
X
9, Etalonnage longueur TS
–
X
30, Etalonnage TT
X
X
31, Etalonnage longueur d’outil
X
X
32, Etalonnage rayon d’outil
X
X
33, Etalonnage de la longueur et du rayon de l'outil
X
X
400, Rotation de base
X
X
401, Rotation de base à partir de deux perçages
X
X
402, Rotation de base à partir de deux tenons
X
X
403, Compenser la rotation de base avec un axe rotatif
X
X
404, Initialiser la rotation de base
X
X
405, Dégauchir une pièce avec l’axe C
X
X
408, Point d'origine au centre d'une rainure
X
X
409, Point d'origine au centre d'un ilot oblong
X
X
410, Point d'origine, intérieur rectangle
X
X
411, Point d'origine, extérieur rectangle
X
X
412, Point d'origine, intérieur cercle
X
X
413, Point d'origine, extérieur cercle
X
X
414, Point d'origine, coin extérieur
X
X
415, Point d'origine, coin intérieur
X
X
416, Point d'origine, centre cercle de trous
X
X
417, Point d'origine, axe palpeur
X
X
418, Point d'origine, centre de 4 trous
X
X
HEIDENHAIN TNC 320
497
Cycle
TNC 320
iTNC 530
419, Point d'origine, un axe
X
X
420, Mesure d’un angle
X
X
421, Mesure d’un perçage
X
X
422, Mesure cercle, extérieur
X
X
423, Mesure rectangle, intérieur
X
X
424, Mesure rectangle, extérieur
X
X
425, Mesure rainure, intérieur
X
X
426, Mesure bossage, extérieur
X
X
427, Alésage à l’outil
X
X
430, Mesure cercle de trous
X
X
431, Mesure plan
X
X
440 Mesure du désaxage
–
X
441, Palpage rapide
–
X
405, Sauvegarder cinématique
–
X
451, Mesurer cinématique
–
X
452, Compensation Preset
–
X
480, Etalonnage TT
X
X
481, Etalonnage/contrôle de la longueur d'outil
X
X
482, Etalonnage/contrôle du rayon d'outil
X
X
483, Etalonnage/contrôle de la longueur et du rayon d'outil
X
X
484, Etalonnage du TT infrarouge
–
X
498
Comparatif : différences concernant la
programmation
Fonction
TNC 320
iTNC 530
Introduction de textes (commentaires,
noms de programme, points
d'articulation, adresses de réseau etc.)
La saisie est faite avec le clavier virtuel
de l'écran
La saisie est faite avec le clavier ASCII
Changement de mode, lorsqu'une
séquence est en phase d'édition
Non autorisé
Autorisé
PGM CALL, SEL TABLE, SEL PATTERN, SEL
CONTOUR : choisir le fichier dans la fenêtre
en superposition
Disponible
Non disponible
„ Fonction mémoriser fichier
„ Disponible
„ Non disponible
„ Fonction enregistrer fichier sous
„ Disponible
„ Non disponible
„ Annuler modifications
„ Disponible
„ Non disponible
„ Fonction souris
„ Disponible
„ Disponible
„ Fonction de tri
„ Disponible
„ Disponible
„ Introduction du nom
„ Ouvre une fenêtre en superposition
Choisir fichier
„ Synchronise le curseur
„ Gestion des raccourcis
„ Non disponible
„ Disponible
„ Gestion de favoris
„ Non disponible
„ Disponible
„ Configurer la représentation des
colonnes
„ Non disponible
„ Disponible
„ Disposition des softkeys
„ Légère différence
„ Légère différence
Fonction sauter séquence
Insérer/supprimer via softkey
Insérer/supprimer via clavier ASCII
Choisir l'outil du tableau
Choix avec le menu d'un écran partagé
Choix dans une fenêtre en superposition
Curseurs dans tableaux
Après l'édition de la valeur, positionner
les touches horizontales fléchées dans
la colonne
Après l'édition de la valeur, positionner
les touches horizontales fléchées dans
la colonne suivante/précédente
Programmation de fonctions spéciales
avec la touche SPEC FCT
La barre des softkey s'ouvre en tant que
sous-menu en appuyant sur la touche.
Quitter le sous-menu : appuyer à
nouveau sur la touche SPEC FCT, la TNC
affiche à nouveau la dernière barre
active
La barre des softkey devient la dernière
barre en appuyant sur la touche. Quitter
le sous-menu : appuyer à nouveau sur la
touche SPEC FCT, la TNC affiche à
nouveau la dernière barre active
Programmation des entrées et sorties
de contour avec la touche APPR DEP
La barre des softkey s'ouvre en tant que
sous-menu en appuyant sur la touche.
Quitter le sous-menu : appuyer à
nouveau sur la touche APPR DEP, la
TNC affiche à nouveau la dernière barre
active
La barre des softkey devient la dernière
barre en appuyant sur la touche. Quitter
le menu : appuyer à nouveau sur la
touche APPR DEP, la TNC affiche à
nouveau la dernière barre active
Gestion de fichiers :
Gestion des fichiers
HEIDENHAIN TNC 320
499
Fonction
TNC 320
iTNC 530
Appuyer sur la touche du clavier END
avec menu actif CYCLE DEF et TOUCH
PROBE
Termine la phase d'édition et appelle la
gestion des fichiers
Termine le menu respectif
Appel du gestionnaire de fichiers avec
les menus actifs CYCLE DEF et TOUCH
PROBE
Termine la phase d'édition et appelle la
gestion des fichiers La barre des softkey
reste active, lorsque l'on quitte la
gestion des fichiers
Message d'erreur Touche non
fonctionnelle
Appel de la gestion des fichiers avec les
menus actifs CYCL CALL, SPEC FCT,
PGM CALL et APPR/DEP
Termine la phase d'édition et appelle la
gestion des fichiers La barre des softkey
reste active, lorsque l'on quitte la
gestion des fichiers
Termine la phase d'édition et appelle la
gestion des fichiers. La barre de base
des softkeys est choisie, lorsque l'on
quitte la gestion des fichiers
„ Fonction de tri d'après des valeurs à
l'intérieur d'un axe
„ Disponible
„ Non disponible
„ Annuler tableau
„ Disponible
„ Non disponible
„ Cacher les axes inexistants
„ Non disponible
„ Disponible
„ Commutation des affichages
liste/formulaire
„ Commutation avec la touche de
partage d'écran
„ Commutation par softkey
commutateur
„ Insérer une ligne individuelle
„ Autorisé partout, renumérotation
„ N'est autorisé qu'en fin de tableau.
possible après demande Une ligne
Ligne avec valeur 0 est insérée dans
vide est insérée, résoudre en
toutes les colonnes
remplissant manuellement avec des 0
„ Transférer par touche les positions
des valeurs effectives dans chaque
axe du tableau des points zéro
„ Non disponible
„ Disponible
„ Transférer par touche les positions
des valeurs effectives dans tous les
axes du tableau des points zéro
„ Non disponible
„ Disponible
„ Transférer avec une touche la dernière
position mesurée avec le TS
„ Non disponible
„ Disponible
„ Introduction de commentaire dans la
colonne DOC
„ Au moyen de la fonction „Editer le
champ actuel“ et du clavier virtuel
„ par le clavier ASCII
„ Programmation des axes parallèles
„ Neutre avec les coordonnées X/Y,
commutation avec FUNCTION
PARAXMODE
„ Dépend de la machine avec les axes
parallèles disponibles
„ Correction automatique des rapports
relatifs
„ Les rapports relatifs ne sont pas
corrigés automatiquement dans les
sous-programmes de contour
„ Tous les rapports relatifs sont
automatiquement corrigés
Tableau de points zéro :
Programmation flexible de contours
FK :
500
Fonction
TNC 320
iTNC 530
„ Aide lors de messages d'erreur
„ Appel avec la touche ERR
„ Appel avec la touche HELP
„ Aide lors de messages d'erreur,
lorsqu'une séquence est en phase
d'édition
„ L'origine et la solution ne peuvent pas
être affichées avec le curseur actif
„ Une fenêtre superposée indique
l'origine et la solution
„ Changement de mode, quand le menu
d'aide est actif
„ Le menu d'aide se ferme lors du
changement de mode de
fonctionnement
„ Le changement de mode de
fonctionnement n'est pas autorisé
(touche non fonctionnelle)
„ Choisir le mode de fonctionnement en
arrière-plan, quand le menu d'aide est
actif
„ Le menu d'aide se ferme lors de la
commutation avec F12
„ Le menu d'aide reste ouvert lors de la
commutation avec F12
„ Messages d'erreur identiques
„ Sont collectés dans une liste
„ Ne sont affichés qu'une seule fois
„ Acquittement des messages d'erreur
„ Tous les messages d'erreur (même si
affichés plusieurs fois) doivent être
acquittés, la fonction Effacer tous est
disponible
„ Le message d'erreur ne doit être
acquitté qu'une seule fois
„ Accès aux fonctions du protocole
„ Un journal de bord et des fonctions de
filtrage performantes (erreurs, appuis
sur touches) sont disponibles
„ Le journal de bord complet est
disponible sans fonction de filtrage
„ Mémorisation des fichiers de
maintenance
„ Disponible Lors d'un crash du
système, aucun fichier de
maintenance n'est créé
„ Disponible Lors d'un crash du
système, un fichier de maintenance
est créé automatiquement
„ Liste des derniers mots recherchés
„ Non disponible
„ Disponible
„ Afficher les éléments de la séquence
en cours
„ Non disponible
„ Disponible
„ Afficher la liste des séquences NC
disponibles
„ Non disponible
„ Disponible
Démarrer la recherche avec le curseur
actif et les touches fléchées haut/bas
Fonctionne avec 9999 séquences max,
réglable avec données de config.
Aucune restriction concernant la
longueur du programme
Traitement des messages d'erreur :
Fonction de recherche :
Graphique de programmation :
„ Représentation des déplacements
„ Impossible, après EFFACER
GRAPHIQUE, les séquences CN
d'une séquence CN individuelle, après
définies antérieurement sont toutes
l'effacement du graphique par softkey
toujours affichées
„ Disponible
„ Représentation avec grille à l'échelle
„ Disponible
„ Non disponible
„ Edition de sous-programmes de
contour dans les CYCLES SLII avec
AUTO DRAW ON
„ Lors des messages d'erreur, le
curseur se trouve dans le programme
sur la séquence CYCL CALL
„ Lors des messages d'erreur, le
curseur se trouve sur la séquence du
sous-programme ayant provoqué
l'erreur
„ Décalage de la fenêtre zoom
„ Fonction de répétition non disponible
„ Fonction de répétition disponible
HEIDENHAIN TNC 320
501
Fonction
TNC 320
iTNC 530
„ Syntaxe FONCTION PARAXCOMP :
configurer le comportement et
l'affichage des déplacements
„ Disponible
„ Non disponible
„ Syntaxe FONCTION PARAXMODE : définir
l'affectation des axes parallèles à
déplacer
„ Disponible
„ Non disponible
„ Accès aux données des tableaux
„ Avec instructions SQL
„ Par FN17-/FN18- ou les fonctions
TABREAD-TABWRITE
„ Accès aux paramètres machine
„ Avec fonction CFGREAD
„ Avec la fonction FN18
„ Création de cycles interactifs avec
CYCLE QUERY, p.ex. cycles de palpage
en mode Manuel
„ Disponible
„ Non disponible
Programmation des axes
secondaires :
Programmation de cycles
constructeur
Comparatif : différences concernant le Test de
programme, fonctionnalité
Fonction
TNC 320
iTNC 530
Représentation des valeurs Delta DR et
DL de la séquence TOOL CALL
Ne sont pas prises en compte
Sont prises en compte
Test jusqu'à la séquence N
Fonction non disponible
Fonction disponible
Calcul du temps d'usinage :
A chaque répétition de la simulation
avec la softkey START, le temps
d'usinage est ajouté
A chaque répétition de la simulation
avec la softkey START, le chronomètre
démarre à 0
502
Comparatif : différences concernant le Test de
programme, utilisation
Fonction
TNC 320
Disposition des barres de softkeys et
des softkeys dans l'écran
La disposition des barres des softkeys et des softkeys diffère en fonction du
partage de l'écran actif.
Fonction zoom
Chaque plan de coupe est
sélectionnable individuellement par
softkey
Plan de coupe sélectionnable avec trois
softkeys commutables
Jeu de caractères dans le partage
d'écran PROGRAMME
Petit jeu de caractères
Moyen jeu de caractères
Exécuter le programme test séquence
par séquence, commuter à tout instant
dans le mode Programmation
Lors du passage dans le mode
Programmation apparaît le message pas
d'autorisation d'écriture. Dès
qu'une modification est faite, le
message d'erreur disparait et le
programme revient en début de
programme lorsque l'on retourne dans
le mode Test.
Les changements de mode de
fonctionnement peuvent être exécutés.
Les changements dans le programme
n'ont pas d'influence sur la position du
curseur.
Fonctions auxiliaires M spécifiques à la
machine
Sources de messages d'erreur, si non
intégrées dans PLC
Ignorées lors du test de programme
Afficher/éditer un tableau d’outils
Fonction disponible par softkey
Fonction non disponible
HEIDENHAIN TNC 320
iTNC 530
503
Comparatif : différences concernant les modes
Manuels, fonctionnalité
Fonction
TNC 320
iTNC 530
Fonction 3D ROT : désactivation
manuelle d'une fonction d'inclinaison de
plan
Quand une inclinaison du plan d'usinage
est réglée sur inactif dans les deux
modes, les champs de texte ne
contiennent pas les positions
d'inclinaison des axes rotatifs en cours,
mais des 0 après l'appel suivant de la
fonction 3D ROT. Les positions ne
seront introduites correctement que si
un seul mode de fonctionnement est
réglé sur Inactif.
Même si l'inclinaison est réglée pour les
deux modes sur Inactif les valeurs
programmées sont affichées dans le
dialogue 3D ROT.
Fonction incrémentale
Un incrément de déplacement peut être
défini séparément pour les axes
linéaires et rotatifs.
Incrément commun aux axes linéaires et
rotatifs.
Tableau Preset
Transformations de base (Translation et
Rotation) du système de coordonnées
pièce au moyen des colonnes X, Y etZ,
ainsi que les angles dans l'espace SPA,
SPB et SPC.
Transformation de base (Translation) du
système de coordonnées pièce au
moyen des colonnes X, Y etZ, ainsi que
rotation de base ROT du système de
coordonnées (rotation).
Les offsets des axes peuvent être
définis en plus pour chaque axe avec les
colonnes X_OFFS à W_OFFS. Dont la
fonction est paramétrable.
En plus, les points d'origine des axes
rotatifs et linéaires peuvent être définis
au moyen des colonnes A à W.
L'initialisation du preset d'un axe rotatif
agit comme un offset d'axe. Cet offset
agit également lors du calcul de la
cinématique et de l'inclinaison du plan
d'usinage.
Les offsets des axes rotatifs définis
dans les paramètres machine n'ont pas
d'influence sur les positions d'axes qui
ont été définies dans la fonction
inclinaison du plan.
Le paramètre machine CfgAxisPropKin>presetToAlignAxis permet de définir si
l'offset d'axe doit être calculé ou non en
interne après la mise à zéro
Avec MP7500 Bit 3 est définie si la
position de l'axe rotatif actuel se réfère
au point zéro machine, ou à une position
0° du premier axe rotatif (en règle
générale l'axe C)
Comportement lors de l'initialisation
preset
Indépendamment de cela, un offset
d'axe a toujours les effets suivants :
„ Un offset d'axe influence toujours la
position de la valeur nominale de l'axe
concerné (l'offset d'axe est retranché
de la valeur d'axe actuelle).
„ Quand une cordonnée d'axe rotatif est
programmée dans une séquence L,
l'offset d'axe est additionné à la
coordonnée programmée
504
Fonction
TNC 320
iTNC 530
„ Editer le tableau Preset en mode
Programmation
„ Possible
„ Impossible
„ Tableau Preset en fonction de la plage
de déplacement
„ Non disponible
„ Disponible
„ Introduction de commentaire dans la
colonne DOC
„ avec le clavier virtuel
„ avec le clavier ASCII
Définir la limitation de l'avance
La limitation d'avance pour les axes
linéaires et rotatifs sont paramétrables
séparément
Une seule limitation d'avance est
définissable pour les axes linéaires et
rotatifs
Gestion du tableau preset :
Comparatif : différences concernant les modes
Manuels, utilisation
Fonction
TNC 320
Jeu de caractères lors du partage
d'écran POSITION
Affichage de positions, petits caractères Affichage de positions, grands
caractères
Transférer les valeurs de position de
palpeurs mécaniques
Transférer la position courante par
softkey
Transférer la position courante par
touche du clavier
Quitter le menu des fonctions de
palpage
Possible uniquement avec la softkey
END
Possible avec la softkey FIN et avec la
touche du clavier END
Quitter le tableau Preset
Possible uniquement avec les softkeys
BACK/ END
A tout moment avec la touche du clavier
END
Edition multiple de la table d'outils
TOOL.T, ou du tableau d'emplacements
tool_p.tch
La barre des softkeys sélectionnée en
dernier est active
La barre des softkeys fixe (barre softkey
1) est affichée
HEIDENHAIN TNC 320
iTNC 530
505
Comparatif : différences concernant l'exécution,
utilisation
Fonction
TNC 320
iTNC 530
Disposition des barres de softkeys et
des softkeys dans l'écran
La disposition des barres des softkeys et des softkeys diffère en fonction du
partage de l'écran actuel.
Jeu de caractères dans le partage
d'écran PROGRAMME
Petit jeu de caractères
Moyen jeu de caractères
Modifier le programme après que
l'usinage ait été interrompu par la
commutation dans le mode Exécution
séquence par séquence
En plus, le programme doit être
interrompu avec la softkey STOP
INTERNE
Modifications possibles directement
après commutation dans le mode
Programmation
Changement de mode après que
l'usinage ait été interrompu par la
commutation dans le mode Exécution
séquence par séquence
En plus, le programme doit être
interrompu avec la softkey STOP
INTERNE
Changement de mode autorisé
Changement de mode après que
l'usinage ait été interrompu par la
commutation dans le mode Exécution
séquence par séquence et dans la TNC
320 avec STOP INTERNE
Lors du retour dans les modes
Exécution : message d'erreur Séquence
en cours non sélectionnée. Le choix le
la position d'interruption doit avoir lieu
avec l'amorce de séquence
Le changement de mode est permis, les
informations modales sont mémorisées,
l'usinage peut se poursuivre
directement avec un start CN.
Entrée aux séquences FK avec GOTO, si
un usinage a eu lieu jusqu'à cet
emplacement avant le changement de
mode
Message d'erreur Programmation FK :
position initiale indéfinie
Entrée autorisée
„ Comportement après le
rétablissement des états de la
machine
„ Le menu de retour dans le programme
est appelé avec une softkey
ABORDER POSITION
„ Le menu de retour dans le programme
est choisi automatiquement
„ Le retour dans le programme au point
d'interruption s'effectue selon la
logique de positionnement.
„ L'ordre de déplacement n'est pas
visible, dans l'écran est toujours
affiché un ordre d'axes bien défini.
„ L'ordre des axes est visualisé dans
l'écran par les affichages des axes
correspondants
„ Terminer le repositionnement lors du
réaccostage
„ La routine de repositionnement doit
être terminée après avoir atteint la
position avec la softkey ABORDER
POSITION
„ La routine de repositionnement se
termine automatiquement après avoir
atteint la position
„ Choisir le partage de l'écran lors du
réaccostage
„ Seulement possible, si la position de
réaccostage a déjà été atteinte
„ Possible dans tous les modes
Amorce de séquence :
506
Fonction
TNC 320
iTNC 530
Messages d'erreur
Les messages d'erreur (p. ex. messages
de fin de courses) sont présentes
également après en avoir supprimé
l'origine et doivent être acquittées
séparément
Les messages d'erreur sont acquittées
partiellement après suppression de
leurs origines
Modifier le contenu des paramètres Q
après une interruption d'usinage due à la
commutation dans le mode Exécution
séquence par séquence
En plus, le programme doit être
interrompu avec la softkey STOP
INTERNE
Modification possible directement
Déplacement manuel pendant une
interruption de programme avec M118
actif.
Fonction non disponible
Fonction disponible
HEIDENHAIN TNC 320
507
Comparatif : différences concernant l'exécution,
déplacements
Attention, contrôler les déplacements!
Sur une TNC 320, les programmes élaborés sur des
commandes plus anciennes peuvent être à l'origine de
déplacements erronés ou de messages d'erreur!
Les programmes doivent absolument être exécutés avec
attention et prudence!
La liste suivante indique les différences connues. La liste
ne peut en aucun cas être considérée comme étant
complète!
Fonction
TNC 320
iTNC 530
Superposition de la manivelle avec
M118
Active dans le système de coordonnées
en cours, le cas échéant avec une
rotation ou incliné, ou dans le système
de coordonnée fixe, selon le
paramétrage du menu 3DROT en mode
Manuel
Active dans le système de coordonnées
machine fixe
M118 en liaison avec M128
Fonction non disponible
Fonction disponible
Entrée/sortie du contour avec APPR/DEP,
R0 actif, le plan des éléments est
différent du plan d'usinage
Si cela est possible, exécution des
séquences dans le plan des éléments
défini, message d'erreur pour APPRLN,
DEPLN, APPRCT, DEPCT
Si cela est possible, exécution des
séquences dans le plan d'usinage
défini, message d'erreur pour APPRLN,
APPRLT, APPRCT, APPRLCT
Facteur d'échelle des déplacements
d'entrée/sortie (APPR/DEP/RND)
Facteur d'échelle spécifique à un axe
autorisé, le rayon n'est pas mis à
l'échelle
Message d'erreur
Entrée/sortie avec APPR/DEP
Message d'erreur si avec APPR/DEP LN ou
APPR/DEP CT un R0 est programmé
Utilisation d'un outil de rayon 0 avec une
correction RR
Entrée/sortie avec APPR/DEP, quand les
éléments de contour ont une longueur
de 0
Les éléments de contour de longueur 0
sont ignorés Les déplacements d'entrée
et de sortie sont calculés
respectivement pour le premier et
dernier élément de contour valides
Un message d'erreur est émis
lorsqu'après une séquence APPR, un
élément de contour de longueur 0 est
programmé (en relation avec le premier
point programmé dans une séquence
APPR).
La iTNC ne délivre pas de message
d'erreur quand un élément de contour
de longueur 0 a été programmé avant
une séquence DEP, mais calcule le
déplacement de sortie en tenant
compte du dernier élément de contour
valide.
508
Fonction
TNC 320
iTNC 530
Validité des paramètres Q
En règle générale, Q60 à Q99 (ou. QS60 à
QS99) agissent toujours d'une manière
globale.
Q60 à Q99 (ou. QS60 à QS99) agissent
d'une manière locale ou globale dans les
programmes de cycles convertis (.cyc)
en fonction de MP7251. Les appels
imbriqués peuvent être la cause de
disfonctionnements
„ Séquence avec R0
„ Séquence avec R0
„ Séquence DEP
„ Séquence DEP
„ END PGM
„ PGM CALL
Annulation automatique de la correction
de rayon d'outil
„ Programmation du cycle 10 ROTATION
„ Choix du programme
Séquences avec M91
Aucun calcul de la correction de rayon
d'outil
Calcul de la correction de rayon d'outil
Correction de forme de l'outil
La correction de forme de l'outil n'est
pas supportée, car cette façon de
programmer est considérée comme une
programmation stricte de valeur de
programmation d'axe, et que les axes ne
forment pas une système de
coordonnées rectangulaires
La correction de forme de l'outil est
supportée
Séquence de positionnement paraxial
La correction agit comme avec les
séquences L
Positionnement à la valeur de
coordonnée programmée en partant de
la position de la séquence précédente.
Si la séquence suivante est une
séquence linéaire, celle-ci est traitée
comme une séquence avec correction
de rayon, de telle sorte que la trajectoire
est à nouveau parallèle au contour à
partir de la deuxième séquence linéaire.
Amorce de séquence dans les tableaux
de points?
L'outil est positionné à la prochaine
position à usiner
L'outil est positionné à la dernière
position usinée
Séquence vide CC dans le programme
CN (la dernière position d'outil est
initialisée comme Pôle)
La dernière séquence de
positionnement dans le plan d'usinage
doit comporter les deux coordonnées du
plan
La dernière séquence de
positionnement dans le plan d'usinage
ne doit pas comporter obligatoirement
les deux coordonnées du plan. Peut être
problématique avec les séquences RND
ouCHF
Séquence RND dans le cas d'échelle
spécifique à un axe.
RND est mise à l'échelle, le résultat est
une ellipse
Un message d'erreur est délivré
HEIDENHAIN TNC 320
509
Fonction
TNC 320
iTNC 530
Réaction lorsque l'élément d'un contour
a une longueur 0 après une séquence
RND ou CHF
Un message d'erreur est délivré
Un message d'erreur est émis, quand
un élément de contour de longueur 0
précède une séquence RND ou CHF
Un élément de contour de longueur 0
est ignoré, quand il succède à une
séquence RND ou CHF
Programmation de cercle en
coordonnées polaires
L'angle de rotation incrémental IPA et le
sens de rotation DR doivent avoir le
même signe. Sinon, un message
d'erreur est délivré.
Le signe du sens de rotation est utilisé,
lorsque DR et IPA sont définis avec des
signes différents
Correction de rayon d'outil sur les arcs
de cercle ou hélice avec un angle
d'ouverture = 0
La transition des éléments précédent et
suivant est assurée. En plus, le
déplacement de l'axe de l'outil est
exécuté juste avant la transition. Si cet
élément était le premier ou le dernier
élément à corriger, l'élément suivant ou
précédent est traité comme le premier
ou le dernier élément à corriger
L'équidistance de l'arc/l'hélice sert à la
création du parcours d'outil
Surveillance des signes des paramètres
de profondeur des cycles d'usinage
Doit être désactivée, si le cycle 209 est
utilisé
Aucune restriction
Changement d'outil avec correction du
rayon d'outil active
Interruption du programme et message
d'erreur
La correction du rayon d'outil est
annulée, le changement d'outil est
exécuté
Prise en compte de la longueur d'outils
dans l'affichage de positions
Les valeurs L et DL dans l'affichage des
positions sont calculées à partir du
tableau d'outils et la valeur DL à partir de
TOOL CALL
Les valeurs L et DL dans l'affichage des
positions sont calculées à partir du
tableau d'outils
510
Fonction
TNC 320
iTNC 530
„ Nombre d'éléments de contour
définissables
„ Au maximum 16384 séquences dans
12 contours partiels max.
„ Au maximum 8192 éléments dans 12
contours partiels max., aucune
restriction de contours partiels
„ Définir le plan d'usinage
„ L'axe de l'outil dans TOOL CALL défini
le plan d'usinage
„ Les axes de la première séquence
dans le premier contour partiel
définissent le plan d'usinage
„ Déplacements lors de l'évidement
„ Les ilots ne sont pas contournés. Lors
de chaque prise de passe, il y a une
plongée pendulaire avec réduction
d'avance (accroissement du temps
d'usinage)
„ Les îlots sont contournés à la
profondeur d'usinage en cours
„ Evidement parallèle au contour ou
fraisage de canal et paraxial
„ Evidement toujours parallèle au
contour
„ Paramétrable avec MP7420
„ Calcul interne de combinaisons de
contours
„ Les combinaisons se rapportent
„ Paramétrable avec MP7420, que les
toujours au contour défini, non corrigé
contours à combiner soient corrigés
ou non.
„ Stratégie d'évidement, lorsque
plusieurs poches sont définies
„ Toutes les poches sont d'abord
évidées à la même profondeur
„ Paramétrable avec MP7420, que les
différentes poches soient évidées
entièrement ou à la même profondeur
„ Position en fin de cycle SL
„ Position finale = hauteur de sécurité
de la position définie avant l'appel du
cycle
„ Paramétrable avec MP7420, que la
position finale soit la dernière position
programmée ou la hauteur de sécurité
„ Arcs d'accostage pour la finition du
fond avec le cycle 23
„ La courbure des arcs d'accostage
dépend de la courbure du contour à
usiner. L'emplacement de l'arc de
cercle est optimisé par un calcul
systématique par rapport au contour à
usiner, et ceci sans risque de collision.
En cas d'impossibilité, les arcs de
cercle sont divisés par deux, jusqu'à
ce que l'emplacement soit possible.
„ Les arcs de cercle d'entrée de contour
sont construits en fonction du point de
départ et du premier élément du
contour fini de façon à éviter toute
collision.
„ Arcs d'accostage pour la finition des
flancs avec le cycle 24
„ Le rayon de l'arc est de 3 rayons
d'outil max, l'angle d'ouverture est de
0.8 rad max. L'emplacement de l'arc
de cercle est optimisé par un calcul
systématique par rapport au contour à
usiner, et ceci sans aucun risque de
collision. En cas d'impossibilité, les
arcs de cercle sont divisés par deux,
jusqu'à ce que l'emplacement soit
possible.
„ Les arcs ont une une valeur maximum
(trajectoire dépend du point de départ
et du contour), les hauteurs des arcs
ont une valeur maximum égale à la
surépaisseur + distance de sécurité
Cycles SLII 20 à 24 :
HEIDENHAIN TNC 320
511
Fonction
TNC 320
iTNC 530
„ Traitement des coordonnées et
valeurs d'axes en dehors du plan
d'usinage
„ Un message d'erreur est délivré
„ Tous les axes décrivant le contour qui
sont en dehors du plan d'usinage sont
ignorés
„ Comportement des îlots, qui ne sont
pas inclus dans les poches
„ Ne peuvent pas être définis par une
formule de contour complexe
„ Peuvent être définis restrictivement
par une formule de contour complexe
Cycles SLII 20 à 24 :
„ Opérations multiples avec les cycles
„ Opérations multiples réelles
SL et formules complexes de contour
exécutables
„ Opérations multiples réelles
exécutables avec restriction
„ Correction de rayon actif lors de CYCL
CALL
„ Un message d'erreur est délivré
„ La correction du rayon d'outil est
annulée, le programme est exécuté
„ Séquence de déplacement paraxial
dans un sous-programme de contour
„ Un message d'erreur est délivré
„ Le programme est exécuté
„ Fonctions auxiliaires M dans un sousprogramme de contour
„ Un message d'erreur est délivré
„ Les fonctions sont ignorées
„ Déplacement de plongée dans un
sous-programme de contour
„ Un message d'erreur est délivré
„ Les prises de passe sont ignorées
„ M110 (réduction d'avance dans les
angles rentrants)
„ Fonction inactive dans les cycles SL
„ Fonction active également dans les
cycles SL
Tracé de contour cycle 25 SLII :
séquences APPR-/DEP pour la définition
du contour
Non autorisé, usinage plus concluant de
contour fermé possible
Séquences APPR-/DEP permises comme
élément de contour
„ Définition du contour
„ Neutre avec coordonnées X/Y
„ Dépend de la machine avec les axes
rotatifs disponibles
„ Définition de décalage sur le corps de
cylindre
„ Neutre au moyen du décalage du
point zéro dans X/Y
„ Décalage du point zéro des axes
rotatifs dépendant de la machine
„ Définition de décalage par rotation de
base
„ Fonction disponible
„ Fonction non disponible
„ Programmation d'arc de cercle avec
C/CC
„ Fonction disponible
„ Fonction non disponible
„ Séquences APPR-/DEP lors de définition
de contour
„ Fonction non disponible
„ Fonction disponible
„ Rainure, évidement intégral
„ Fonction disponible
„ Fonction non disponible
„ Tolérance définissable
„ Fonction disponible
„ Fonction disponible
Usinage de corps de cylindre avec
cycle 29 :
Plongée directe sur le contour du oblong Approche circulaire du contour du
oblong
Cycles de poches, tenons et rainures
25x
Dans les plages limites (rapports
géométrique outil/contour), des
messages d'erreurs sont émis lorsque
les déplacements de plongée mènent à
des comportements imprévus ou
critiques
Usinage de corps de cylindre
généralités :
Usinage de corps de cylindre avec
cycle 28 :
512
Dans les plages limites (rapports
géométrique outil/contour), une plongée
verticale est possible le cas échéant
Fonction
TNC 320
iTNC 530
Cycles palpeurs pour initialiser le point
d'origine (cycles manuels et
automatiques)
Les cycles ne peuvent être exécutés
qu'avec le plan d'usinage incliné inactif,
le décalage du point zéro inactif et la
rotation avec le cycle 10 inactive Les
cycles de palpage peuvent être utilisés
avec les transformation de coordonnées
actives à partir de la version 34055x 05.
Aucune restriction concernant les
transformations de coordonnées
„ TABLE ROT/COORD ROT non défini
„ Le paramétrage de configuration est
utilisé
„ COORD ROT est utilisé
„ La machine est configurée avec angle
d'axe
„ Toutes les fonctions PLANE peuvent
être utilisées
„ Seulement PLANE AXIAL est exécuté
„ Programmation d'un angle dans
l'espace en incrémental avec PLANE
AXIAL
„ Un message d'erreur est délivré
„ L'angle incrémental dans l'espace est
interprété comme valeur absolue
„ Programmation d'un angle d'axe
incrémental avec PLANE SPATIAL si la
machine est configurée en angle
spatial
„ Un message d'erreur est délivré
„ L'angle d'axe incrémental est
interprété comme valeur absolue
„ FN17
„ Fonction disponible, les différences
sont minimes
„ Fonction disponible, les différences
sont minimes
„ FN18
„ Fonction disponible, les différences
sont minimes
„ Fonction disponible, les différences
sont minimes
fonction PLANE :
Fonctions spéciales pour la
programmation des cycles :
HEIDENHAIN TNC 320
513
Comparatif : différences concernant le mode MDI
Fonction
TNC 320
iTNC 530
Exécution de séquences dépendantes
les unes des autres
Fonction disponible partiellement
Fonction disponible
Mémorisation de fonctions modales
Fonction disponible partiellement
Fonction disponible
Comparatif : différences concernant le poste de
programmation
Fonction
TNC 320
iTNC 530
Version démo
Les programmes de plus de 100
séquences CN ne peuvent pas être
sélectionnées, un message d'erreur est
émis.
Les programmes peuvent être
sélectionnés, 100 séquences peuvent
être représentées ; les autres sont
supprimées pour la représentation
Version démo
Si au moyen de l'imbrication avec PGM
CALL, plus de 100 séquences CN sont
atteintes, le graphique de test n'affiche
rien, aucun message d'erreur n'est
émis.
Des programmes imbriqués peuvent
être simulés.
Copier des programmes CN
Copie possible avec Windows-Explorer
de/vers répertoire TNC:\
La procédure de copie doit être réalisée
au moyen de TNCremo ou de la gestion
des fichiers du poste de programmation.
Commuter la barre de softkeys
horizontale
Un clic sur un trait commute une barre à
droite, ou une barre à gauche
Un clic sur un trait quelconque rend
celui-ci actif
514
C
D
Accès aux tableaux ... 265
Accessoires ... 74
Affichage d'état ... 65
général ... 65
supplémentaire ... 67
Aide contextuelle ... 127
Aide lors de messages d'erreur ... 122
Aide, télécharger fichiers ... 132
Amorce de séquence ... 432
après une coupure
d'alimentation ... 432
Angles de contours ouverts M98 ... 313
Appel de programme
Programme quelconque utilisé
comme sous-programme ... 217
Arrondi d'angle ... 176
Articulation de programmes ... 117
Avance ... 376
Modifier ... 377
Possibilités d'introduction ... 87
Sur les axes rotatifs, M116 ... 364
Avance en millimètres/tour de broche :
M136 ... 315
Avance rapide ... 134
Axe rotatif
Déplacement avec optimisation de
la course : M126 ... 365
Réduire l'affichage : M94 ... 366
Axes auxiliaires ... 79
Axes principaux ... 79
Contournages
Coordonnées cartésiennes
Droite ... 174
Trajectoire circulaire avec
raccordement
tangentiel ... 181
Trajectoire circulaire de rayon
défini ... 179
Trajectoire circulaire et centre de
cercle CC ... 178
Vue d'ensemble ... 173
Coordonnées polaires
Droite ... 187
Trajectoire circulaire avec pôle
CC ... 188
Trajectoire circulaire avec
raccordement
tangentiel ... 189
Vue d'ensemble ... 186
Coordonnées polaires
Approche/sortie du contour ... 167
Principes de base ... 80
Programmation ... 186
Copier des parties de programme ... 92
Correction d'outil
Longueur ... 154
Rayon ... 155
Correction de rayon ... 155
Angles externes, angles
internes ... 157
Introduction ... 156
Cycles de palpage
Mode Manuel ... 386
Voir Manuel d'utilisation des Cycles
palpeurs
Cylindre ... 300
Décalage du point-zéro ... 334
Annulation ... 335
Introduction des
coordonnées ... 334
par tableau de points zéro ... 335
Définir les paramètres Q locaux ... 232
Définir les paramètres Q
rémanents ... 232
Dégagement du contour ... 319
Dégauchissage de la pièce
Par mesure de deux points d'une
droite ... 392
Déplacement des axes de la
machine ... 373
Avec la manivelle
électronique ... 375
Avec les touches de sens
externes ... 373
Pas à pas ... 374
Dialogue ... 86
Dialogue Texte clair ... 86
Disque dur ... 95
Données d'outils
à introduire dans le
programme ... 137
à introduire dans le tableau ... 138
Appeler ... 148
Indexer ... 142
Valeurs Delta ... 137
Droite ... 174, 187
Durées de fonctionnement ... 457
C
Calcul du temps d'usinage ... 420
Calcul entre parenthèses ... 276
Calculatrice ... 118
Calculs d'un cercle ... 238
Caractéristiques techniques ... 470
Centre de cercle ... 177
Cercle entier ... 178
Chanfrein ... 175
Changement d'outil ... 149
Chemin ... 97
Codes ... 443
Contour, accoster ... 165
avec coordonnées polaires ... 167
Contour, quitter ... 165
avec coordonnées polaires ... 167
Contournage, fonctions
Principes de base ... 160
Cercles et arcs de cercle ... 162
Prépositionnement ... 163
HEIDENHAIN TNC 320
E
Ecran ... 59
Ellipse ... 298
Etalonnage automatique d'outils ... 140
Etalonnage d'outils ... 140
Etat des fichiers ... 99
Exécution de programme
Amorce de séquence ... 432
Exécuter ... 427
Interrompre ... 428
Poursuivre après une
interruption ... 430
Sauter des séquences ... 437
Tableau récapitulatif ... 426
515
Index
A
Index
F
F
G
Facteur d’avance pour plongées :
M103 ... 314
Familles de pièces ... 233
FCL ... 442
Fichier
Créer ... 102
Fichier d'utilisation d'outils ... 151
Fichiers ASCII ... 336
Fichier-texte
Fonctions d'effacement ... 338
Ouvrir et quitter ... 336
Recherche de parties de
texte ... 340
FK, programmation ... 194
Droites ... 198
Graphique ... 196
Ouvrir le dialogue ... 197
Possibilités d'introduction
Contours fermés ... 203
Direction et longueur des
éléments du contour ... 201
Données du cercle ... 202
Points auxiliaires ... 204
Points finaux ... 200
Rapports relatifs ... 205
Principes de base ... 194
Trajectoires circulaires ... 199
FN14: ERROR : Emission de messages
d'erreur ... 243
FN16: F-PRINT : émission formatée de
textes ... 248
FN18: SYSREAD : lecture des donnéessystème ... 252
FN19: PLC : transférer valeurs au
PLC ... 262
FN20: WAIT FOR: Synchroniser CN et
PLC ... 262
FN23: DONNEES D'UN CERCLE :
Calculer un cercle à partir de 3
points ... 238
FN24: DONNEES D'UN CERCLE :
Calculer un cercle à partir de 4
points ... 238
Fonction de recherche ... 93
Fonction FCL ... 7
Fonction MOD
Quitter ... 440
Sélectionner ... 440
Tableau récapitulatif ... 441
Fonction PLANE ... 343
Angle d'axe, définition ... 358
Annuler ... 346
Choix des solutions possibles ... 362
Comportement de
positionnement ... 360
Définition avec angles dans
l'espace ... 347
Définition avec angles de
projection ... 349
Définition avec les angles
d'Euler ... 351
Définition avec points ... 355
Définition incrémentale ... 357
inclinaison automatique ... 360
Vecteurs, définition ... 353
Fonctions auxiliaires
Introduire ... 306
pour axes rotatifs ... 364
pour broche et arrosage ... 307
pour contrôler le déroulement du
PGM ... 307
pour données de
coordonnées ... 308
pour le comportement en
contournage ... 311
Fonctions M
Voir fonctions auxiliaires
Fonctions spéciales ... 324
Fonctions trigonométriques ... 236
Format, informations ... 474
Franchir les points de référence ... 370
Gestion de fichiers
Fichier
Créer ... 102
Protéger un fichier ... 108
Sélectionner un fichier ... 100
Gestionnaire de fichiers ... 97
Appeler ... 99
Copier un fichier ... 103
Effacer un fichier ... 104
Marquer des fichiers ... 106
Nom de fichier ... 96
Renommer un fichier ... 107
Répertoires ... 97
Copier ... 103
Créer ... 102
Transfert externe des
données ... 109
Type de fichier ... 95
Vue d'ensemble des fonctions ... 98
Gestionnaire de programmes : voir
Gestionnaire de fichiers
Graphique de programmation ... 196
Graphiques
Agrandissement de la
découpe ... 418
lors de la programmation ... 120
Agrandissement d'une
découpe ... 121
Vues ... 414
516
H
Hélice ... 190
N
P
Imbrications ... 219
Inclinaison du plan d'usinage ... 343,
401
Manuelle ... 401
Initialisation du point d'origine ... 378
sans palpeur 3D ... 378
Insertion de commentaires ... 115
Instructions SQL ... 265
Interface de données
Configurer ... 444
Repérage des broches ... 468
Interface Ethernet
Connecter ou déconnecter les
lecteurs réseau ... 111
Introduction ... 449
Possibilités de raccordement ... 449
Interfaces de données, repérage des
broches ... 468
Interpolation hélicoïdale ... 190
Interrompre l'usinage ... 428
Introduire la vitesse de rotation
broche ... 148
iTNC 530 ... 58
Niveau de développement ... 7
Nom d'outil ... 136
Numéro d'option ... 442
Numéro d'outil ... 136
Numéros de versions ... 443
Positions sur une pièce
Absolues ... 81
Incrémentales ... 81
Pré-définition de paramètres ... 325
Principes de base ... 78
Programmation de paramètres Q
Remarques sur la
programmation ... 289
Programmation des paramètres
Q ... 230, 280
Calculs d'un cercle ... 238
Fonctions mathématiques de
base ... 234
Fonctions spéciales ... 242
Fonctions trigonométriques ... 236
Remarques sur la
programmation ... 231, 282, 283,
284, 286, 288
Sauts conditionnels ... 239
Programmation paramétrée : voir
programmation de paramètres Q
Programme
Articulation ... 117
Editer ... 89
Ouvrir nouveau ... 84
Programme, nom: voir Gestionnaire de
fichiers, nom de fichier
Programmer les déplacements
d'outils ... 86
Pupitre de commande ... 61
L
Lancement automatique du
programme ... 436
Logiciel de transmission de
données ... 447
Logiciel, numéro ... 442
Longueur d'outil ... 136
Look ahead ... 316
M
M91, M92 ... 308
Messages d'erreur ... 122
Aide pour ... 122
Messages d'erreur CN ... 122
Mesure des pièces ... 397
Mise hors tension ... 372
Mise sous tension ... 370
Modes de fonctionnement ... 62
HEIDENHAIN TNC 320
O
Outils indexés ... 142
P
Palpeurs 3D
Etalonnage
à commutation ... 388
Paramètres Q
Contrôler ... 241
Emission formatée ... 248
Paramètres locaux QL ... 230
Paramètres rémanents QR ... 230
Réservés ... 292
Transférer valeurs au PLC ... 262,
263, 264
Paramètres string ... 280
Paramètres utilisateur
généraux
Palpeurs 3D ... 290, 291
pour palpeurs 3D ... 462
spécifiques à la machine ... 460
Paramètres-machine
Palpeurs 3D ... 290, 291
pour palpeurs 3D ... 462
Partage de l'écran ... 60
Périphériques USB, connecter/
déconnecter ... 112
Pièce brute, définir ... 84
Pile tampon, remplacer ... 475
Point d'origine, initialisation manuelle
Centre de cercle comme point
d'origine ... 396
Coin pris comme point
d'origine ... 395
d'un axe quelconque ... 394
Point d'origine, sélection ... 82
Points d'origine, gestion ... 380
Positionnement
avec inclinaison du plan
d'usinage ... 310, 368
Avec introduction manuelle ... 406
R
Raccordement au réseau ... 111
Rayon d'outil ... 136
Réaccoster le contour ... 435
Régler le taux en BAUDS ... 444
Remplacer des textes ... 94
Répertoire ... 97, 102
Copier ... 103
Créer ... 102
Effacer ... 105
Répétition de parties de
programme ... 216
Représentation 3D ... 416
Représentation dans 3 plans ... 415
Rotation de base
à déterminer en mode
Manuel ... 393
517
Index
I
Index
S
T
Sauvegarde des données ... 96, 114
Sélectionner l'unité de mesure ... 84
Séquence
Effacer ... 90
Insérer, modifier ... 90
Simulation graphique ... 419
Afficher l'outil ... 419
Sortie de données dans l'écran ... 251
Sortie de données sur serveur ... 252
Sous-programme ... 215
SPEC FCT ... 324
Sphère ... 302
Structure de
programme ... 83
Superposition de la manivelle
M118 ... 318
Surveillance de la zone
d’usinage ... 421, 425
Surveillance du palpeur ... 320
Synchroniser CN et PLC ... 262
Synchroniser PLC et CN ... 262
Système d'aide ... 127
Système de référence ... 79
TNCguide ... 127
TNCremo ... 447
TNCremoNT ... 447
Trajectoire circulaire ... 178, 179, 181,
188, 189
TRANS DATUM ... 334
Transférer la position courante ... 88
Transfert externe des données
iTNC 530 ... 109
Transformation des
coordonnées ... 334
Trigonométrie ... 236
T
Tableau d'emplacements ... 145
Tableau d'outils
Editer, quitter ... 141
Fonctions d'édition ... 142
Possibilités d'introduction ... 138
Tableau de points zéro
Valider les résultats du
palpage ... 387
Tableau Preset ... 380
Valider les résultats du
palpage ... 387
Teach In ... 88, 174
Test d'utilisation des outils ... 151
Test de programme
Exécuter ... 425
Régler la vitesse ... 413
Tableau récapitulatif ... 422
518
U
Utiliser les fonctions de palpage avec
palpeurs mécaniques ou
comparateurs ... 400
V
Valeurs de palpage dans tableau de
points zéro, enregistrer ... 387
Valeurs de palpage dans tableau Preset,
enregistrer ... 387
Variables de texte ... 280
Vecteur normal à la surface ... 353
Vitesse de broche, modifier ... 377
Vitesse de transmission des
données ... 444, 445
Vitesse en BAUDS, configurer ... 444,
445
Vue de dessus ... 414
DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
{ +49 8669 31-0
| +49 8669 5061
E-mail: [email protected]
Technical support | +49 8669 32-1000
Measuring systems { +49 8669 31-3104
E-mail: [email protected]
TNC support
{ +49 8669 31-3101
E-mail: [email protected]
NC programming { +49 8669 31-3103
E-mail: [email protected]
PLC programming { +49 8669 31-3102
E-mail: [email protected]
Lathe controls
{ +49 8669 31-3105
E-mail: [email protected]
www.heidenhain.de
Les palpeurs 3D de HEIDENHAIN
vous aident à réduire les temps morts:
Par exemple
•
•
•
•
Dégauchissage des pièces
Initialisation des points de référence
Etalonnage des pièces
Digitalisation de formes 3D
avec les palpeurs de pièces
TS 220 avec câble
TS 640 avec transmission infra-rouge
• Etalonnage d‘outils
• Surveillance de l‘usure
• Enregistrement de rupture d‘outil
avec le palpeur d‘outils
TT 140
679 222-31 · Ver01 · SW05 · Printed in Germany · 11/2011 · F&W

Manuels associés